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Competition between pattern reconstruction and sequence
processing in non-symmetric neural networks

A C C Coolen and D Sherrington

Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford
OX1 3NF, UK

Received 14 May 1992

Abstract. We study an Ising spin neural network model in which the interaction matrix
consists of a symmetric Hebbian term (which favours the reconstruction of static patterns)
and a non-symmetric transition term (which favours limit cycles corresponding to the
processing of pattem sequences), We calculate phase diagrams and analyse the relation
between the relative weight of the two competing contributions to the interaction matrix
and the frequency of the periodic atiractors.

1. Intreduction

Ising spin models for neural networks have made a significant contribution 0 our
understanding of parallel information processing in nervous tissue. Following the
pioneering work by Little [1), Hopfield [2] and Amit ¢f o/ [3] many such models have
been constructed and analysed. Representing the states of neurons as binary variables,
which evolve in time according to a stochastic local field alignment, may be a crude
simplification of biological reality. On the other hand it often allows for a detailed
quantitative analysis. Choosing simple neural variables {s;} enables one to choose
more complicated synaptic interaction matrices {J,;}, and vice versa. A common
feature of most statistical mechanical models for neural networks is the separability
of the interaction matrix, which naturally leads to a convenient description in terms of
macroscopic order parameters. A second important property shared by many models
is the symmetry of the interaction matrix. If J is symmetric, then the stochastic local
field alignment obeys detailed balance and one can immediately apply equilibrium
statistical mechanics. The system’s phase diagram can be understood in terms of the
minimization of some scalar quantitity (in equilibrium to be identified with the free
energy). The system will always evolve to some equilibrium configuration, even if in
the thermodynamic limit ergodicity is broken. If, on the other hand, the interaction
matrix is not symmetric, then the microscopic probability distribution will again evolve
in time to some equilibrium solution; detailed balance, however, no longer holds. In
the case of ergodicity breaking in the thermodynamic limit (i.e on finite timescales)
the system might end up in limit cycles or even in chaotic trajectories. It will no
longer be possible to apply equilibrium statistical mechanics or to think in terms of
some scalar quantity being minimized. One must study the dynamics directly, as
in [4].
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In this paper we analyse an Ising spin neural network model (of N spins) in which
the interaction matrix consists of two terms: a (symmetric) Hebbian [5] term, which
tends to stabilize a given set of p patterns, and a (non-symmetric) transition term,
which tends to create period-p limit cycles (or sequences) composed of the same set of
p patterns. Clearly there wili be a competition between the two tendencies, controlled
by the relative weight v of the two competing terms. There are several motivations
for studying this particular model. The first motivation is that competition between
incompatible physical processes usually leads to interesting phenomena (the Hopfield
model itself is, in fact, based on competition between fixed-point attractors); nice re-
cent examples in the context of neural network models are the papers by Dotsenko [6]
(competition between the Hebb [5] matrix and the pseudo-inverse [7] matrix) and by
Evans et al [8] (competition between the Hebb matrix and a symmetry transformation
term, in order to achieve invariant pattern recognition). In both of these examples,
however, the competition is between two symmetric matrix contributions, whereas the
present model involves competition between a symmetric term and a non-symmetric
term (i.e. competition between fixed-point attractors and non-stationary limit cycles).
The second motivation for studying the present model is that it arises naturally in the
context of modelling chemical modulation in neural systems [9]. If during a Hebbian
[5] learning phase both static patterns and sequences of patterns are presented to a

natwnrl wnth trancmicginn dalave than thie natwnarl uill davalan ntarn atinne arhioh
HULWUITR WILH UGLIDHLIDDIVIL Ueidyd, Wb WD HCILWUITR Wil UnyLiup JHICTabUID wiliLil

are a combination of a Hebbian term and a transition term. Furthermore, due to the
incorporation into the model of chemical modulators (as in [10]), the relative weight
of the two terms will be a function of the actual chemical setting in the recall phase.
Consequently, studying the cffect of neuromodulators on the information-processing
properties of such a model implies studying the physics of the present model as a
function of the relative weight 1 of the twn terms in the interaction matrix. The third
motivation for studying the present model presented itself a posteriori when reading
the recent papers by Griniasty ef af [11] and Cugliandole [12]. These authors show
that experiments on monkeys by Miyashita et af [13], which demonstrate that se-
quentially learned stimuli of uncorrelated patterns can produce correlated attractors,
can be explained by Ising spin models in which the interaction matrix is exactly the
symmetric part of the matrix in our model. Since the authors scem to have put in
the symmetry of their interaction matrix to simplify the analysis, the present model
can be seen as a natural next step in explaining the aforementioned physiological
data. Finally, we would like to emphasize that, in general, non-symmetric models
built around transition matrices (constructed for explaining temporal association in
nervous tissue) are far less intensively studied than symmetric attractor models. A
nice overview of the theory developed in this field (until 1990) can be found in [14].
In particular, the model studied in the present paper can be seen as the zero delay
limit of the one introduced by Sompolinsky and Kanter [15]. Only recently have some
authors tried to go beyond simulation studies and the analysis of some specific types
of dynamic solutions to the macroscopic equations, and to perform a more thorough
mathematical analysis of the physics contained in such modeis [16-18].

This paper is organized as follows. In section 2 we define our model and the two
types of stochastic local field alignment considered (sequential and parallel) and derive
the corresponding macroscopic evolution laws for the order parameters (restricting
ourselves to the case p < \})TV_ ) in the thermodynamic limit N — co. We solve the
case p = 2 directly ¢which is a trivial case in the sense that the order parameters
decouple). In sections 2 and 3 we analyse the types of fixed-points possible in terms
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of a Tfv phase diagram (where T is the temperature) and their stability properties.
Apart from a second-order phase transition we show that for p > 2 there is also a
first-order transition. In section 5 we exploit symmetries of the pattern distribution,
which enables us to explain for parallel dynamics a symmetry of the phase diagram
and to show that all dynamic solutions of the macroscopic equations in the region
v > 1 (where the Hebbian term is the more important one) are related to the
solutions in the region » < } (where the transition term is the more important one)
by a time-dependent unitary transformation. Finally in section 6 we present results
of numerical iteration of the macroscopic laws and we analyse, for parallel dynamics,
the relation between the relative weight » of the two contributions to the synaptic
matrix and the frequency of the periodic attractors.

2. Model definitions and evolution of erder parameters

21. Model definitions

Our model will be an Ising spin neural network of N spins s5; € {—1,1}. If neuron
i is at rest we put s; = ~1; if neuron 7 is firing we put 5; = 1. We will study 2
system that has learned a given set {€#} (u = 1...p) of patterns &% ¢ {-1,1}"V. If
the learning stage consisted of two Hebbian [5] phases, a first one during which the
patterns were learned as static objects and a second one during which the patterns
were learned as dynamic objects, the final connection matrix (representing the synaptic
interactions between the neurons) will be

v 1—v .
Jij:‘N—Zu:‘frff”'_ﬁ_‘Zlffﬂfj (g : mod p)
or

1
Jij = WZE?AM&‘; (1)

wp
A,,=vb,+(1-v)S,, Sup =6, m1 (pe: mod p}. (2)

If we define 0 € v < 1 the parameter v will enable us to interpolate smoothly
between the familiar and analytically well understood Hopfield [2] model (v = 1)
and the far less intensively studied sequence processing model (v = 0).

We will consider two types of rules for the evolution in time of the microscopic
state probability p,(s), both based on stochastic local field alignment with the local
fields as given by (3)

N

i=1

First we will take time to be a continuous varjable and define the evolution in time
of p,(s) by the master equation:

N N
Lpilo) = Y p By (Fy9) = 3 pi(s)wys) @
i=1 =1
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where F} is thg spin-flip operator, ie. F;®(s,,...,s5) = ®(sy,.. 3 8jy e 8N ),
and the transition rates w;(s) are defined as

w;(8) = [1 — tanh(Bs;k;)].

The second type of dynamics considered is a paraflel stochastic local field alignment
in the form of a Markov process; now time is a discrete variable:

Pyi(8) = Z: w(s' — 8)p,(8'). &)

.I
The transition probabilities w(s’' — 8) are defined as

N

w(s’' — s)= H 5[l + s; tanh(8R]))].

i=1

Since for p > 2 the interaction matrix (1) is non-symmetric one cannot define a
Hamiltonian such that the stochastic local field alipnment becomes a Glauber dynam-
ics; therefore equilibrium statistical mechanics is not applicable. In order to analyse
the system’s dynamics we will introduce p macroscopic quantities for describing a
given macroscopic state s:

qy,(‘g)— ZE# (p=1...p).

i=t

In terms of these macroscopic variables we can now write the local fields h; as
h; =&+ Agq(s).

Throughout this paper we will assume p (the number of patterns stored) to obey
p<VN.

2.2. The macroscopic laws

Following the derivations in [4] and [19] we find the evolution in time of the macro-
scopic quantities g to become deterministic in the thermodynamic limit N — oco. For
case (4) the evolution in time is governed by the set of coupled nonlinear differential
equations:

2

im Z ;tanh[B€; - Aql - q ©

—'00

&In-

where £; = (&),..,€7) € {—1,1}7. For the case of a parallel Markov process (5)
one finds a set of coupled nonlinear mappings [20]:

N

q(t+1)= lim = Z ;tanh[B€; - Ag(1)]. M
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If, furthermore, the pattern components £{' are drawn at random from {—1,1}, we

find in the thermodynamic limit equation (6) being replaced by (8) and equation (7)
being replaced by (9):

= {{tanh[B¢ - Aql}; — ¢ @
g(t+1) = ({tanh[B¢ - Ag(2)]), ®

where the average is defined as

(@) =277 Y B(e).
EE{—],I}F

For future use we will briefly indicate some of the properties of the matrices
encountered. For the index permutation matrix S (2) one finds

Sts=58t=1 SP =1,
Since the Hermitian part 2(A 4 A') and the anti-Hermitian part £(A — A') of the

matrix A (2) commute, it must have a complete set of orthogonal eigenvectors {|n)}.
This set turns out to be

In)= (&f,...,&y) n=0,...,p—1

1 .
&n = e?‘mn/\/p. 10
YE S (10}

One can easily show that the following relations hold:

14
(nlmy= Y &y ey =6,
A=1

S|n) = e'“""“’[n) Stn) = e”i"h’ln) 11
Aln) = [v+ (1= )e 7] n) = a, ).

In a subsequent section we will also encounter the index permutation matrix K
Ky, =6y 0410 (A, p: mod p)

for which

K =K' K= KSKk = st KSTK =8
Kin) = ™7 )p — ),
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23. A toy problem: the symmetric case p = 2

Solution of the model becomes straightforward if p = 2. Now there are only two
order parameters, which decouple. Since p = 2 is exactly the situation where the
interaction matrix {J;;} is symmetric, one can perform a thermodynamic analysis.

Upon introduction of the variables z* = ¢, + ¢,, one finds, after performing
the pattern averages involved, that both dynamic laws (8) and (9) decouple into
independent one-dimensional evolution laws. In the case of sequential dynamics one
obtains in terms of the new variables:

%z‘ = tanh[B(2v—1)z7] - 2~ (12)

d , __ + +
rridi tanh[8z7] — 2
whereas in the case of parallel dynamics one obtains in terms of z*:

z}, = tanh{Bz]] z;y; = tanh[A(2r — 1)z7]. (13}

If we now define m[3] as the non-negative solution of the transcendental equation
m = tanh[@m] we can describe the asymptotic behaviour of (12) and (13) as follows:

Sequential dynamics

1< T zF -0 (t— o0)
w-1<T<1: zg — sign[zf]m[F]
z, —0 (t = 00)
0<T<2v-1: 2z} —sign[zfm[A)]
z; — sign{zg]m[B(2v - 1)) (t — 00).
FParallel dynamics
1<T: £ -0 (t — o)
2v-1<T<1: 2z} — sign[zF]m[A)]
2 —0 (t — oc)
0<T<2r—-1: z} — sign[zf1m(7]
zy — signfzg]m[B(2v - 1)) (t — o0)
0<T <1 -2 zF — sign{2f]m[3]
zy — (=1} sign[zg]m{A(1 - 2v)] (t — oco).

In the case of sequential dynamics we may conclude that there are two second-order
phase transitions at the lines T = 1 (where the system goes from the paramagnetic
state t0 an ordered state which is equally correlated with the two patterns) and at
T = 2v — 1 (where the system enters the region in which the two patterns can be
distinguished). Both transitions correspond to continuous bifurcations of new fixed-
points. The system will always approach an equilibrium configuration (as it should
be). In the case of parallel dynamics there are three continuous transitions: at the
line T = 1 (where the system goes from the paramagnetic state to an ordered state
which is equally correlated with the two patterns), at 7 = 2v — 1 (where the system
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enters the region in which the patterns can be distinguished) and at T =1 - 2v
(where there is a transition from the region of the equally correlated fixed-point to
that where the system will flow towards a period-2 limit cycle), with a triple point
at (T,v) = (0,1). The transitions at T = 1 and T = 2v — 1 are again ordinary
second-order transitions, indicating the continuous bifurcation of a new fixed-point,
The transition at T = 1~ 2v is of a different type (the system goes from a fixed-point
into a limit cycle).

The alternative approach (only applicable in the present case p = 2) is to perform
a standard thermodynamic analysis. The symmetry of the interaction matrix allows us
to conclude (after elimination of the diagonal elements J;;) that for the sequential
evolution in time (4) the equilibrium probability distribution is the Gibbs distribution,
with the Hamiltonian H:
\ o= BH y__1\"
ITE H=-50 85009

iZj

Using the standard procedures [3] one can now calculate the free energy per spin
I8l =~(1/8N)log Z5[A] in the thermodynamic limit N — oo (for p fixed). Intro-
duction of the auxiliary variables z, B ¢, + ¢, leads to a factorization of the partition
function Z,[B], in which the summation over all possible spin states decouples into
independent summations over the spin states in disconnected sublattices I, :

I, ={i=1,...,N | & =+£7}.

The final result is

23— --log cosh| ,Bz_l,]j

l\a'»—l

hm f[ﬁ]'-u—log2+ {

+ % {5(2;,4 -1)2% - —élog cosh[3(2w ~ l}z_]} (14)

where the order parameters z, = q; & q, are those solutions of
2z, = tanh[B2,] z_ = tanh{3(2v — 1)z_]

that minimize expression (14). We can now understand the dynamics of the order
parameters in terms of free energy minimization. The ground-state energy per spin
E, is obtained by taking the limit 3 — co in (14), with the result E; = -1 (for
v<Yand Ey = -1v (for v > ).

In the case of parallel dynamics (5) it has been shown [21] that the equilibrium
probability distribution is now given by

pm(.s)—we-.'ﬁ‘gr H=- ;32109; 2cosh (ﬂZJ s )j'

Using the above expression we can now again calculate the free energy per spin
fl8] = —(1/8N)log Zx[8] in the thermodynam:c limit N — oo (for p fixed).
Introduction of the auxiliary variables z, = q, + g, again leads to a factorization of

the partition function Z,[3], in which the summation over all possible spin states
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Sequential Dynamics Parailel Dynamics
1 1~
vk M P < M P
0 I | ! ! el j
0 1 0 1
: T T

Figure 1. The p = 2 phase diagrams: P, paramagnelic region, g = 0: M, mixture
region, ¢ ¥ 0, ¢y = g2; H, Hopfield region, ¢ # 0, 1 # g C, cycle region,
a(t+2) = q(t), q(t + 1) # a(3).

decouples into independent summations over the spin states in the disconnected
sublattices [,. The final result takes the form:

Aim flal=-3 1052 + = ,B min {¢*'(z,) — log cosh[Bz,]}
Z4

+ _ﬂ min {c"(z_) log cosh[3(2v — 1)2_]}

c{m)=1(1+ m)log(l + m) + (1 = m)log(1l — m).
The saddle points are the solutions of
z, = tanh [Btanh [8z,]] z_ = tanh [3(2v — 1) tanh [3(2v - 1)z_]] .
From which one can, in turn, again deduce that
z, =tanh [3z,] z_ = tanh [B(2v - 1)z_].

Therefore the final expression for the free energy per spin becomes

. z 1 1
}\lrlj]m fl8] = —-52 log2 + -j -3 log cosh[3z,]
+ %(21/— 1)22 - Elog cosh{F(2v — 1}z_] (15)

in which the order parameters z, = ¢, % ¢, are those solutions of the saddle-point
equations that minimize expression (15). We can now understand the evolution of
order parameters for parallel dynamics again in terms of free energy minimization.
As was the case for the Hopfield model [3] the [ree energy for parallel dynamics
is exactly twice the free energy obtained for sequential dynamics. The important
difference with having sequential dynamics, of course, is the presence of period-2
limit cycles, which are the consequence of the fact that for parallel dynamics only
one iteration step is sufficient to perform the state change z_ — —z_ (which is
energetically allowed).
The p = 2 phase dlagrams obtained in this section are shown in figure 1.
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3. Fixed-points

3.1. Critical temperature
The fixed-point solutions of (8) and (9) follow from the corresponding fixed-point
equation:

g = ({tanh(5§ - Aq)),. (16)

We will first calculate the critical temperature 7. = 37! for the existence of non-
trivial solutions of the fixed-point equation. For a non-trivial solution g # 0 of (16)
we find that

— . . 1 —_— 2 .
g =q {(e(s Aq)B [0 dA[1 - tanh?(AAE Aq)]>€}
=48({(¢- 0P + (€ A0 ¢~ (1 - A)a)'}
1
x fn d [t — tanh®(BAE - Aq)])e < 4B {((€- @)% + (- Ag)®)e}

1., q- AlAq
—Eﬁq {1+T“*‘

which for g # 0 implies (with 7= 8~1):

1 - ATA
T< =141+ max -q—-—é-—q .
2 q q
In deriving this inequality we have used the statistical independence of the stored
patterns: {£,£,) = 6,,,. Since for the matrix A at hand (2) there exists a complete

orthonormal basis {In}} of eigenvectors (10) we may write
. 2
<+ dmax(nlalAln) = 4+ Fmax |+ (1= )e™ [ =1,

Since for T < 1 non-trivial fixed-points do exist (as we will see), the critical temper-
ature (as far as fixed- points are concemed) is clearly T, = 1.

Next we want to find out how, for T < 1, nion- u:vml sotutions of the fixed- pOii“u
equation (16) bifurcate. If we differentiate both sides of (16) with respect to either
8 or v we obtain

[1- ﬁP(Q)AI =T(q)Agq

aﬁ
09 _ 94
[1-Ar(g)Al 57 = BU(a) 5 e
where the matrix ['(g} is defined as

[(q)y, = (£,&, [1 - tanh®(3€ - Aq)]),. (17)

As a bifurcation parameter one can either take /3 or v. Taking /3 as a bifurcation
parameter a fixed-point bifurcation occurs as soon as d,q is not uniquely defined;
if we take » as a bifurcation parameter we find a bifurcation if J,q is not uniquely
defined. In both cases the condition for a new solution of (16) to bifurcate is

det |1 ~ BT{(q)A| = 0. ' (18)
Equations (16) and (18) are to be solved simultaneously.
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3.2. Continuous bifurcations from the trivial ficed-point

Since for T > 1 the only fixed-point is ¢ = 0, we will first consider continuous
bifurcations from this trivial fixed-point. Since T'(0),, = §, , equation (18} turns into
det{l — BA|=0or

J|z) : Alz) = T|z).
In terms of the basis {|n)} (10) of eigenvectors of A this implies
{n|z) [V+(1—~u)ez“'i“/?—T =0 n=0,...,p—1, (19)

If v =1 we are in fact studying the Hopfield model [2]): A reduces to the identity
matrix and we need higher order expansions for determining which types of fixed-
points bifurcate at 7 = 1 (which turn out to be the well known pure and mixture
states). However, for v < 1 the fixed-point equation (16) is far more restrictive with
regard to the types of fixed-points allowed, If p is odd there is only one solution for
the above set of equations (19): |z) = |0) = (1/,/P)(1,...,1) (with corresponding
bifurcation temperature Tb =1} if p is even and v > { there is also the solution

lz) = |p/2) = (1//P)1,— —1) (with bifurcation temperature 7,, = 2r—1).
aco enlnhnnc r'r\rfncnnnrl to 'Fn" ouvon mivinrac nf all ertnrad nattarne and altarnatin
jgiteriad LU LUToopl 1 UYL MHALULLS UL all sluiva pduibl i aliv au\.«uxauns

full mixtures of all stored patterns, respectively, and turn out to constitute solutions
of the fixed-point equation (16) for any T

= ¢*[A])0) (20)
q- B4 [8]lp/2) (1)

where the amplitudes g*[3] and g~ [/3] are the non-trivial solutions of

gt = VP{m ta.nh[,@q"'m\/ﬂ) (22)
g~ = /p{mtanh[B(2v — 1)g”" m+/p]) (23)

where m = (1/p) 327 _, €, The existence of the non-triviai fixed-point ¢+ for T < 1
confirms our previous statement that the critical temperature for fixed-points is indeed
T. = 1. Note that the alternating mixture exists only if p is even and T < 2v - 1,
and that in the latter case the two amplitudes are related by ¢~ [5] = ¢¥[5(2v - 1)].

3.3. Continuous bifurcations from the symmetric fixed-points

The next step is to find out whether for T < 1 there exist fixed-point solutions that,
in turn, bifurcate continuously from either the mixture state g* or (for p even and
T < 2v —1) from g~. Since both g* and ¢~ are solutions of (16}, we can find the
continuously bifurcating fixed-points by solving

det |1 — BT (g¥)A| =0
in which
[(g*) = D*[8] + R*[5](0)(0]

29
F'(g7) = D~[B] + R™[Bllp/2)(p/2]
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and

D*[B] = ;f_l (I1 — m?] [1 — tanh? (Bg*[B)my/P)))

R*(B) = ;p_l ([pm? - 1] [1 - tanh?® (B¢*[8lmy/B)])

D~ (6] = D¥{B(2v —1)] R™[8] = R*[B(2v - 1)].

Having calculated the matrices I'(g%) we can now solve (18). First we consider the
bifurcations from g*:

3le) : {D*[8] + R¥[8]|0)(0]} Alz) = Tle).
In terms of the basis {|n)} of eigenvectors of A this implies:
{DH(B] + R¥[Alono} {v + (1= v)e?™/? Hnja)=Tinjz)  n=0,...,p-1.
Therefore (since a bifurcation from g* cannot, by definition, be in the direction of

0)):

vne{t,.,p—1}:{nje)=00r T = D¥]

drin In]
LE

[81{v + (1 - v)e?

Since T is a real quantity, there can be no continuous bifurcation from g* for odd
p. For p even the only possible continuous bifurcation from g+ is in the direction of
|p/2), with a corresponding bifurcation temperature determined by

1= (20 - 1)3,D*[8,).

As might have been expected, the bifurcarion temperature defined by this equation
is below the critical temperatures for the existence of the two constituent fixed-point
solutions.

In the same way one can analyse the continuous bifurcations (if present) from the
alternating mixture state ¢~ (for p even and T < 2y — 1)

3je) : { D8] + R™[B)Ip/2){p/2)} Alx) = Tle).
In terms of the basis {|n}} of eigenvectors of A this implies
(D181 + B 1816, 0} {v + (1 = )2 /7 (o) = T{nlz)
n=0,...,p-1.

Therefore (since a bifurcation from g~ cannot, by definition, be in the direction of

l2/2)):
¥Yne{l,.,p—-1}: (n|lz) =00r T = D7[A] {,,+ (1 - u)e:!‘lrinjp}.

Since T is a real quantity the only possible bifurcation from ¢~ is in the direction of
|0}, with a corresponding bifurcation temperature given via

1= 3,D7[B5,)-
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3.4. Three regions in the T /v phase diagram

One can conclude from the above bifurcation analysis that for T > 2v — 1 only two
non-trivial fixed-points can be found as the result of continuous bifurcations, namely
+q* (20). In the appendix we prove that in the aforementioned regime the full
mixture solutions +q* are, in fact, the only non-trivial fixed-points of equation (16)
(which rules out the possibility of discontinuous bifurcations).

In the remaining regime T < 2v — 1 we have (for p even) already encountered
the fixed-points £q~ (21) (the alternating mixtures). Since for v = 1 our model
reduces to the Hopfield model [2], it is to be expected that there will also be fixed-
point solutions related to the fixed-points of the Hopfield model. As soon as v < 1
we know that for T > 0 any non-trivial fixed-point ¢ # 0 must have non-zero
components g, # 0 only, since from the fixed-point equation (16) one can deduce
(with sgn[0] = 0):

sgn{q,] =sgnlvg, + (1~ v)q,. ] (Y, mod p)

(9. =0=gq,_; =0=...= g =0) Therefore, pure states and mixtures with only
a finite number n < p of non-zero components (as in the Hopfield model) cannot
be fixed-points for v < 1 if T > 0. Only for T = 0 one can find for v+ < 1 non-
trivial fixed-points with a finite number n < p of non-zero components; pure states
q, = 4,,, for instance, turn out to be fixed-points if v > 1.

We will now make an expansion of the fixed-points in powers of n =1 — v. The
zeroth order in this expansion will then precisely be a fixed-point of the Hopfield
model, and subsequent orders will show how the fixed-points of the Hopfield model
are modified as one tends away from the line » = 1 in the phase diagram:

g=1—-v: qEann“ A=1+4n[S-1].

nz0

Insertion of the above expressions into the fixed-point equation {16) leads to recurrent
relations for the expansion coefficients g,,:

g = {§ tanh [G¢ - l10])5

@n = [1 - BT(go)] " {BT(go)(S - 1)q,_,
,@m n—m+1 n-m+1

+Z_'2m Z E 6?l,k1+"‘+‘km(£(£-zk1)

keo=1

. =1
m= =l =

(€ zy Y tanh ™ [BE g} (n2 1)
zn=q+[5-1g,

where the matrix I' is defined by (17). Each fixed-point ¢, of the Hopfield model
thus generates a fixed-point g for the present model (in the regime T < 2v —1) in
the form of a series expansion in powers of 1— . Upon choosing for g, a pure state
g =¢q*(1,0,..,0) one finds

q¢* = tanh[Bq7]
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qn=D—ﬁu—q”n”{ﬁu—q”xS-lmw4+§j§§ummmmmw

m=2
n-m+l n~=m+l
x E E S ki ik (€& 2,) (€ 2, )ff““)s}
k=1 k=1
resulting in
L - ﬁq*(l - q*g)
g=4¢"(1,0,...,0) +(1 V)m(_laos”woal)

+ (1 -0v)?

ﬂ2q-(1 _ q*2) [ 1- q*2
[1-8(1-¢3)°[1-5(1-

+(—2,0,...,0,2)] + O(1 - )3,

q*z)(l,o,...,o,l,—z)

It is not a priori clear that the proposed expansion in powers of 1 — v will converge.
However, numerical analysis shows this to be the case for some finite region in the
T < 2v —1 part of the T'/v phase diagram.
We may now conclude that, as far as fixed-points are concerned, there are effec-
tively three regions in the T /1 phase diagram:
. (i) Region P (T > 1):

q fixed-point = q =190 (paramagnetic region)
(i) Region M 2 -1 < T < 1)

g fixed-point = g = 0 or ¢ = +q* (full mixture region)
(iii} Region H (T < 2v —1):

Non-trivial types of fixed-points g (Hopfield region).

An important feature is that for odd p there must be a first-order transition in (or
at the boundary of) region H, since we found that the only non-trivial fixed-points
that can be obtained by repeated continuous bifurcations from the T > 1 fixed-point
g = 0 are the full mixtures ¢ = +q*. Therefore the Hopfield-type fixed-points in
region H must appear as discontinuous bifurcations. Only for p even is it possible that
all fixed-points can be obtained from a scenario of repeated continuous bifurcations
from ¢ = 0. For p = 2 we have indeed found a second-order transition, however,
for even p > 2 one finds, by solving the fixed-point equations numerically, that the
bifurcations of Hopfield-type fixed-points in region f are discontinuous and therefore
the corresponding transition is first order (as for odd p). Furthermore, solving the
fixed-point equations numerically shows that the location of the first-order transition
line seems not to depend much on the dimension p, and is in good approximation
given by

v(T)=3+T-T*+37° - ;T

In section 6 we will present numerical evidence for this relation. The resulting
picture of the system with respect to how the possible fixed-points are determined by
the system parameters 7' and v is summarized in the phase diagram of figure 2.
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Flgure 2. The types of fixed-points possible: P,
paramagnetic region, ¢ = 0, M, mixture region,
g = ¢(T)(1,...,1) # 0, H, Hopfield region,
App: qu #F gp. The full curve is the first-order
transition and the vertical broken line is the second-
T order transition.

o
P

4. Stability of fixed-points

In this section we will analyse the stability properties of the fixed-points as calculated
in the previous section for both parallel dynamics (Markov process) and sequential
dynamics (master equanon) In the case of paral]el dynamics (9) the criterion for a
fixed-point ¢ to be stable is

18aft L 1Y)
IR ANV

i
lsa(ti—~0  16a(8)] Q(t)I

According to the definition (9) this implies

< 1.

At
max 2 AT @Az @5)
x

L]
where = is real valued and the matrix T is defined in (17). In the case of sequential
dynamics we have to study the behaviour of (8) around a fixed-point g, which is
determined by the Hessian matrix. The criterion for a fixed-point ¢ to be stable is
now given by

[C@)A+AT(Q]= _ .

] :Bz

.
s [

4.1. Stability of the trivial fixed-point
Let us first turn to the stability of the trivial fixed-point ¢ = 0. Since ['(0) = 1 (the
identity matrix) we can conclude

z - AIl?(g) Ax
A —m——

-] 2:2

13- [[(9)A+ AT(g)]= _1

32 x?

= (0]ATA|0}) =1

(the compiete orthogonai basis {|n}} being defined in (10)). Theref
of dynamics one finds:

T>1: g=0is stable T < 1:q=0is unstable.
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4.2. Stability of the fully symmetric ficed-point: general properties

The next fixed-point to be analysed is the fully symmetric mixture state g+ (22). The
matrix ['(g%) has been calculated previously (24):

Péq*) = D*16]+ R*[8)j0) 0].

We can always write the real-valued (p-dimensional) vector = in equations {25) and
(26) in terms of the basis {{n}}:

p—~1
-y — : g JTRF [ mp__ﬂ--u.n}
n=0

where the proviso z,_, = zj, reflects the restriction that = must be real-valued. The
full mixture g* is certainly stable with regard to fluctuations in its amplitude (which
follows from (22)). Therefore we can take r, = 0. The criteria for gt to be stable
now become:

Parallel dynamics: max iz [zof, ! an

! BN TponTTY Z;i iz, |2 32 D+ [3]2

2
. . i je, " Re a, 1
Sequential dynamics: max ""_{jﬂ x! —* < BDTA (28)
BN Tpun g anl }‘T“n i 15)

Here the quantities o, are the eigenvalues of the matrix A (11):

a, v+ (1—v)e ?mnlr
Tlotnn tha eafntinne 1~ { e | amdA T PUSE ¢ JF wm ran eonclnde that tha
LDEE WG JClalivies ll“‘p—ﬂ.f — |y | auu T uf.p”."_ =t i, U wdll WHLIUUL Lhat wiv
maxima in (27) and (28) are obtained by choosing z, = w4, ; + 24, ,_;, which

enables us to write the criteria for g% to be stable as fo}lows

Parallel dynamics: {1* + (1~ 1)? 4 20(1 —~ v) cos(2n/p)}'/* < 1/(8D*{A})
(29)
Sequentiat dynamics: v + (1 — v) cos(2n7/p) < 1/(AD{B]). (30)

From these expressions several conclusions can be drawn already:

(i} If g* is stable under parallel dynamics it is also stable under sequentia) dy-

(i) For v = 1 the stability properries of g% are the same for the two types of
dynamics.

(ili) If g% is stable for v = 1 is is stable for all ¢ € v £ 1 (for both types of
dynamics).

(w) In the case of parallel dynam:cs the stability reglon in the T’/ phase diagram
of g% is symmetric under reflection in the line ¢ = § (i.c. invariant under v — i ~v).
The stability properties near the fines 7 = 0 and 7" = [ of g* can de calculated
analyticaily, without having to resort to numerical analysis of the inequalities (29) and

30).
( )FirSt we will consider T = 0. I p is odd we know from the thermodynamic
analysis of the Hopfield model [3] that for v = 1 the mixture state ¢* is stable,
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Therefore we may conclude that g% must be stable at 7 = 0 for all 0 < v < 1. For
even p and v = 1 the state g* is unstable at T = 0 [3], however, it might stabilize
for v < 1. In the case where p is even one can easily show that

. + = r —p p
p}l_.ngoD[ﬁ] p—12 (p/2)>0'

Therefore 3D*[8] — oo as 8 — oo. For parallel dynamics and p even it now follows
from (29) that at T = 0 the mixture ¢ is always unstable. For sequential dynamics
it follows from (30) that ¢ is stable only if p = 2 and v < 1.

We now turn to the stability of g+ near the line T = 1. Expansion of the
amplitude g*[/3] in powers of 3 — 1 gives (22):

1/2

VB -140(3-1)%2

We can now expand 8 D1[3] near T = 1, with the result

¢Wﬁ]=[3;f2

p+2  3p?
p=1 3p-2

poMEl =1+ (8- 1) |+ o1y,
This expansion shows that for p > 2: d{GD7*[3]} /dB|z_, < 0. This, in turn,
implies that near T = 1 the inequalities (29) and (30) will hold (since the left-hand
side of both inequalities is always below 1). Clearly for all p > 2 the full mixture
state gt is stable near T = 1.

Having investigated the stability properties of g* at the boundaries T = 0 and
T =1 we will now study the limits p small (Le. p=2) and p — oo. The simplest case,
for which determining the regions of stability becomes trivial, is to consider p = 2.
In this case D*[g8) =1 and from (29) and (30) one can immediately deduce:

gt stable (parallel dynamics): T > |2v — 1|
g* stable (sequential dynamics): T > 2v — 1.

In order to find the large p behaviour of the amplitude g*[3] we will have to
work out the pattern averages in (22) and in the definition of D*[4] for large p and
1< 8 <o

gt = /dzP(z)ztaxlll(ﬂq+z) (31
BD*[A] = %fdzl”(z) [l - :-;;—] 1~ tanh?*(3q¢*2)] (32)
where
Plz)=(6 [z _L i 3 A = f _(l.’f_e kzdplogeos(k/ /7
\ l p p=1 “J /E 211'

——
|
| -
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In order to facilitate the expansion of (31) and (32) we will define:
78] = g + (1 /p) + O(p7%)

L,= ﬂf ;;_wz“e"gn [1 - tanh®(Aq,7)]

Expanding (31) and comparing the first two orders gives (since 3 > 1):
Ly=1 0:[1~ L] = {5q0[1 + 2L, — Ly].

Expansion of (32) in turn gives:

1{3 1 1 q _
BD*(8] = Ly + > [ZL"_ 5Ly y5Lla- i[LO_ L )| +0(p~?)
2 -
=1+§;{1—L2}+0(p Y.

Note that

dz 2,2

- 2. 12/

¥ _r Y- rim f =202 e s N\ Fa P Y R
Lig — lepy — & qu \/2._1[-3 < vanly g z) tl —Tanhl \,U(]D/.)j L LO = 1i.

We may now conclude from (29) and (30) that for all 5 > 1 and for all v the mixture
state gt will eventually become unstable as p — oo, since

ﬁD_}"[ﬁ_]’ -+ (1-v) +20(1 -v) cos.(2-.rr/p)}wz

= - il - Ll + 067
_Ll___ v—(1-v)cos(2n/p) = —1[1 - L)+ O(p~?).
BD*(3] 3p 2

Apparently the width of the regions of stability near 7 = 1 and (if p is odd) near
T = 0 vanishes as p — oo.
We can now summarize the stability properties of ¢* (/4 > 1) for the limiting
cases considered:
)p=2:
parallel dynamics: g% is stable & T > |20 — 1|
sequential dynamics: q* is stable < T > 2v — 1.
(i) p — co: g* is unstable forall 0 < T < 1
i) T =0 (p > 2):
p even: g% is unstable

p odd: gt is stable

(iv) T — 1: gt is stable for all p > 2.
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i
Figure 3. Siabitity boundaries of the fuil miXiure fixed-poini g% (U/, unstable; S,
stable): (a) parallel dynamics, p € {4,6,8,10,40} (going from U o 5 ()
parallel dynamics, p € {3,5,7,9,11,41} (going from U w0 S); (c) sequential dy-

namics, p € {4,6,8,10,40} (going from U/ to S); and {d) sequential dynamics,
pe{3,57,9,11,41} (going from I/ o 5).

4.3, Stability of the fully symmetric fixed-point: the full phase diagram

Having analysed the stability of g* for both p = 2 and p — co as well as in the limits
T — 0 and T — 1 we will now study, by solving the relevant equations (29) and
(30) numerically, the stability properties for arbitrary values of T, v and p. The case
p = 2 being analysed in full in a previous section, we here focus on p > 2. Figure
3 shows the regions of stability for the fully symmetric mixture state g* for parallel
dynamics with p even {a) or odd (b), as well as for sequential dynamics with p even
(c) or odd (d).

First we consider paralle! dynamics. For p even (a) there is simply one boundary
line, separating the stability region (near T = 1) from the region of instability (near
T = 0). For p odd (b) there are two boundary lines: for small p in most of the phase
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diagram the state g* is stable (the exceptions consisting of two small unstable regions
near » =0 and v = 1), If p (odd) increases, the two regions of instability grow and
finally merge. For large p (odd) there are two boundary lines, scparating two regions
of stability (near T = 0 and near T = 1, respectively) from a region of instability
(near T = }). Clearly the main difference between p even and p odd is that in the
latter case there are two separate regions of stab:hty Apart from this difference, for

larna o tha raculic far » svan and . ndAd ara cimmilas in tha canca that in keth fracac
mls‘/ P LW LWAOUIW EUF) P VWL AW P WY Al Blllllldl ‘.ll I.I.IC AL ulal HI UULLL wdA0wD

the fixed-point g* will eventually become unstable for all (T',v) as p — co.

Next we consider sequential dynamics. For p even (c) there is again one boundary
line, separating the stability region (near 7" = 1) from the region of instability (near
T = 0). For small odd p (d) in most of the phase diagram the state g* is stable
(the exception being a small unstable region near v = 1). If p (odd) increases this

rpgunn of l‘nEfﬂhlllf}r grows, For large 2 (nrld\ there are two boundary lines, senarating

e & igv iy S, t]ua“bllla

two regions of stability (near T = 0 and near T = 1, respectively) from a region of
instability (near T = 1). Again the main difference between p even and p odd is
that in the latter case there are two separate regions of stability (if p is sufficiently
large). Apart from this difference, for large p the results for p even and p odd are
again similar in the sense that in both cases the fixed-point g* will eventually become
unstable for all (T,v) as p — oo. These results confirm the limiting properties
derived analytically in the previous section.

If we compare the outcome of the two types of dynamics we observe that in the
case of parallel dynamics all stability regions are symmetric with respect to reflection
in the line » = 1 (in contrast to the stability regions for sequential dynamics). As will
be shown in the next section, this symmetry in the phase diagram can be understood
as being the result of symmetries of the underlying dynamics. A further surprising
result is that for p — oo, even in the case of sequential dynamics, in all of the region
2v — 1 < T < 1 the system will evolve towards a non-stationary solution of the
dynamic equations (since all fixed-points are found to be unstable). Most studies
published so far, in which the reproduction of sequences of random unbiased pat-
terns with sequential dynamics is studied, conclude that without additional stabilizing
mechanisms (or a complicated matrix as in [22]) the v = 0 system will evolve towards
the fully symmetric mixture state. However, thesc conclusions are based on simula-
tion studies with rather moderate values for p, whereas the stability of non-stationary
solutions (according to figure 3) requires p to be suiliciently large.

It must be emphasized that stability of the fixed-point g* does not automatically
imply a large basin of attraction. For instance, numerical iteration of (9) shows that,
although for odd p the fixed-point g* is stable near T = 0, in this region of the
phase diagram the unstable pure states g, = 6, are in the domain of attraction of
limit-cycle attractors., If one, finally, studies the stability properties (for p even and
T > 2v — 1) of the alternating mixture ¢~, one finds this fixed-point to be unstable
for all T,u.

5. Symmetries

In this section we will exploit the symmetries in the distribution p of the vectors £ and
establish relations between the solutions of the nonlinear dynamical laws. Apart from
two trivial operations (index shift S and reflection in the origin) we show that, for
parallel dynamics, there is a duality that relates all trajectories in the upper part of
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the phase diagram (v > I) to the trajectories in the lower part of the phase diagram
v <3
5.1. Symmetry mappings

The set G is defined as the set of all linear transformations G under which the
probability distribution p(€) is invariant:

G : p(GE) = p(§) vEe {-1,1}"%.

It consists of all combinations of reflections in the elementary planes £, = 0 and axis
permutations. Each element G in G is a matrix of the form:

Gup = €6, x(p) ¢, €{-1,1}
#: {1,...,p} = {1,...,p} (invertible).

If G € G one can deduce that

G(€ tanh [8€ - Adl)e = (€ tanh [3¢ - GAq)),.

We can now definc symmetry mappings in the following way: GG € § is a symmetry
mapping if and only if

3G’ € G such that Y € [0,1] : GA, = A,(,,G" for some (v} € [0,1].

In this section the matrix A will carry as an index the value of the parameter v,
used in its definition {2). The reason is that we will be considering relations between
successive state vectors in systems which are different with respect to this parameter.
The above definition selects from the set G those mappings that enable us to relate
the right-hand side of (33) in turn to the evolution in time of some state vector G'q.
Using the general form of the matrices G € § one can show that the problem of
finding all symmetry mappings (i.e. all G € G such that (34) holds) has two types of
solution only:

y=v: [G,S]=0 G =G
y=1-wv: 5G =GSs! G=0GS

with the permutation matrix S, defined in (2). Again we can use the general form of
the matrices G € G to calculate these two types of solution explicitly:

Y= G=G'=48" (n=0,£1,%+2,...) 35)
YT=1-v: G=+1K5" G'=GSs (n=0,41,£2,...) (36)
where

Ky, =6, Pl p( mod p).

Some of the properties of the matrix K in relation to S, ST and the basis {|n})} are
given in section 2.

The set of symmetry mappings (35) with 4 = v is gencrated by the two operations
{~1,8) (note: ST» = §P~") They imply the following
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(i) If the vectors {qy,q,,q,,...} correspond to a solution of the parallel dy-
namics (9) for a certain value of the parameter v, then the same is true for
{_"Q()s —g1s =92, - - '} and {ch, S‘hsSQ2$ .- ‘}‘

(ii) If the trajectory g(t) corresponds to a solution of the sequential dynamics (8)
for a certain value of the parameter v, then the same is true for —g(¢) and Sq(t).

These relations refiect more or less trivial symmetries of the problem.

The second (non-trivial) set of symmetry operations (36) with v = 1 — v is, apart
from the two operations {—1, S} we have already discussed, generated by the matrix
K. In the case of sequential dynamics relation (36) cannot be used for establishing
relations between different solutions of the problem (8). In the case of parallel
dynamics, however, we can deduce from (36) the statement

(iii) If the vectors {qy, ¢,,¢5,...} correspond to a solution of the parallel dynam-
ics (9) for a certain value of the parameter v, then a solution of the parallel dynamics
for the vaiue 1 — v is given by {Kq,, SKq,,5*°Kq,,...,5%Kq,,...}.

Apparently for parallel dynamics there is a well-defined correspondence between
the solutions of the evolution equations for the order parameters ¢ in the upper part
of the T/v phase diagram and the solutions in the lower part of this phase diagram.
This might have been guessed from the symmetry of the stability diagram of the full
mixture fixed-point g7,

5.2. Parallel dynamics: the v /1 — v duality

We will now show that for parallel dynamics there is actually a 1-1 correspondence
between all solutions of (9) in the upper half of the 7'/ phase diagram (v > )
and all solutions in the lower half of the phase diagram (v < 1). We will first define
the set £, of sojutions for a given value of the parameter v. Consider an infinite
sequence Q of p-dimensional real-valued vectors:

Q= {q0:q1:492,---}-

The set of all such sequences will be called £. The set £, € £ will now simply be
the set of all sequences @ € L, such that the constituent vectors g, correspond to
successive iterations of the parallel dynamics (37) for the parameter value v:

L, = { Qel|¥n20: q,,, = {{tank (3¢ - A,,qu])e } . &1

Clearly each sequence @ € £, is completely defined by its first state vector g,. In
terms of the sets (37) we can write the correspondence relation resulting from (36)
as -

Qel, = DPQeL,_,
where the linear operation D is defined as
D: L->L
Yn20: [PQl, = D,q, D, =5"K (38)

Since the matrices D, are Hermitian and unitary it immediately follows from the
definition (38) that:

D=1
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which implies that for each value of v there is a 1-1 correspondence between all
clements in £, and all elements in £,_, (a duality between the sets £, and £,_,):

QeL, & PQeL,_, D(DQ) = Q. (39)

It is clear that the stability properties of Q = {q,,9,,9,,-..} € £, and PQ =
{9091, 92, -- -} € £;_, must be the same, since |6q;, | = | D, 6g,| = |éq,,].

A sequence Q = {q,9y,9,,...} € L will be called I-periodic if Vn > 0
Qn41 = Qo A sequence Q = {g,,q,,9;,...} € L corresponds to a fixed-point of the
dynamics (9) if Yn > 0 : g, = q,. We will now simply list a few of the properties of
the duality D which can be easily verified:

Q={‘Jus‘11sQ2a"-} 'DQ={QBaQ'1,q§,---}

HVYn20: |g.l=lq.l

(i) ¥o > 0: (0]gy) = (0lg,);

(iiiy Vo > 0: (p/2]q;) = (-1)"*(p/2]q.);

(iv) Q is l-periodic = DQ is {p-periodic;

(v) Q is Ip-periodic < DQ is lp-periodic;

(vi) @Q represents a fixed point = DQ is p-periodic;

(vii) D{g*,q*,...} = {¢¥,q%,.. .}
Clearly this duality, resu]tmg from symmetry propert:es of the dynamics (9) explains
why the stability diagram of the full mixture state g¥ is symmetric with respect to the
interchange v — 1 — v. It also indicates that with ¢ach stable non-symmetric fixed-
point in the Hopfield region T <« 2v — 1 will correspond a stable p-periodic limit
cycle in the region T < 1 — 2v, This, in turn, implies that to the first-order transition
line v (T) in the region T < 2v — 1 (between stable Hopfield-type fixed-points
and either the full mixture state ¢+ or a limit-cycle attractor) there must correspond
a first-order transition line v_(T) in the region T" < 1 — 2v, which separates the
low-temperature region where there are stable p-periodic limit cycles (different from
the fixed-point g*) from the region where such limit cycles do not exist.

If we finally choose the initial state g, of the sequence Q to be a pure state (i.e.
gy = qué, for some p), we can use the relation K'q, = §'~?7¢, and the fact that S
is a symmetry mapping to derive:
Q={0¢,q),- 14} Q' = {q,€,, 5 . G E Y (€ TN |

Qel, Q€L _,.

Once we know which is the trajectory followed by the state vector upon choosing a
pure initial state goé, in the upper part of the T/v phase diagram, we can immedi-
ately construct the trajectory that starts in the very same initial pure state g,é, for

the lower part of the phase diagram. Furthermore both amplitude and |0) component
of the two evolving state vectors will always be the same, since

|S™+207 K| = [a|  (0][S™*?7) K]2) = (0]2).
If the initial pure state q,é,, is in the attraction domain of some non-trivial fixed-point
g* we obtain

(p) - q{()] v) _ = qUép

Jim g =q" 2> gll" - SHT I (n — o0)

n

[Sn+2P—II(Qm]“ - q;,,_'u_+29-
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If ¢* = g, ie. the pure state q9€, 18 in the domain of attraction of the full mixture
state for parameter value v, then also for paramecter value 1 — v this pure state
will flow towards gt (since Kq* = Sq%t = g*). If ¢* # g7 is a non-trivial fixed-
point (in the region T < 2w — 1) we can immediately calculate the (stable) Limit
cycle to which g,é, will be driven for the parameter value 1 —». The 1 — v limit
cycle ¢, = S"*?7~1 K ¢* represents a smooth periodic trajectory with period p, the
state vectors of which can be calculated using the series expansion introduced for
calculating the fixed-points g* in section 3.4.

6. Numerical iteration of the macroscopic laws

6.1. Periodic attractors

In this section we will analyse some properties of the periodic solutions (note that
for p — oo in most of the phase diagram, 7" > 2v — 1, there will be no stable
fixed-points). Since it is impossible to systematically vary both the model parameters
v, T and p and all possible initial conditions g, in a numerical study of the system
equations (8} and (9), we will restrict ourselves and present some typical examples
of the behaviour observed. If, as a first step, one is only interested in the existence
and amplitude of periodic attractors, it might be convenient to reduce the number of
order parameters considered from p to 2, by introducing the decomposition:

g(t) = Q.((1,...,1) + Qu()d* (%)
Qs(t)E%zqy(t) (],...,1)-@"‘(1):0 QdE’Q(t)"Qs(t)(]s---)l)"
mw

For T > 2v — 1 the only possible fixed-point is g*. In this region of the phase
diagram the existence of a non-stationary solution is therefore equivalent to finding
Qq > 0.

We will first restrict ourselves to parallel dynamics (the behaviour of equation
(9)). Figure 4 shows for p =9, T = 0.5 and v € {0.25,0.5,0.75} the evolution
in time of the overlaps {q,} (upper row) from a pure initial state q, = &,,, as well
as the evolution in time of the amplitudes @, and @ following 50 random draws of
initial state vectors g, (lower row). Since, in terms of stability, we have previously
found that the cases p odd and p even may be quite different, the results of similar
experiments performed with p = 10 are shown in figure 3. From these figures we can
draw some conclusions, which numerical experiments (performed for larger values of
p and different choice for T and v) show to be quite generally valid:

(i) Starting from a pure initial state the system evolves towards a limit cycle, which
depends on the parameter + only through the value of its period 2.

(ii) The region in the phase diagram where pure states are in the domain of
attraction of the full mixture g+ is only a subset of the region where the full mixture
is stable.

(iii) The amplitudes |Q,(t)| and Q4(t) tend towards stationary values for ¢ — oo
(which do not dependent on the initial state).

The above conclusions seem to hold in general as long as T > 2v -~ 1 and
T>1-2v, T <2v—-10 T < 1~ 2 the amplitudes |Q,| and Q4 will
no longer be uniquely defined as soon as one passes the first-order transition lines
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v (T}, which is due to the appearance of Hopficld-type fixed-points and their dual
p-periodic limit cycles, respectively.

The huge amount of computer time involved prevented us from performing similar
numerical studies for the case of sequential dynamics. The only feature we wish to
illustrate is the somewhat surprising conclusion obtained from studying fixed-points
and their stability: the fact that sequential dynamics allows for (non-fixed-point)
periodic attractors. Figure 6 shows the result of iterating the macroscopic laws (8)
for p=10, T = 0.1 and v = 0, following a pure initial state. Data are shown (and
connected) in At = 1 time intervals. Although systems with sequential dynamics
indeed turn out to be able to exhibit oscillatory overlap evolutions (without having to
introduce stabilizing mechanisms), the amplitude of these limit cycles is significantly
smaller than the amplitude corresponding to paraliel dynamics (at least for random
patterns).

ARRARRRRRRRNRRRRREARS
8
8,
d .6
P
5
s 4 H'yw‘.,_
° ;|‘i".';';‘3‘2‘1‘:‘;‘:‘:‘:‘-:3;3:?.*;5;6‘.5;":i:‘;‘-:‘:‘:*‘.‘-:‘:;‘ e
2 [
2 [
m.’ﬂ,:,,»
] A | | |
o B Lol lnihia
0 10 20 30 40 50
time

Figure 6, Numerical iteration of the macroscopic laws for sequential dynamics, starting
from a pure state (p = 10, T = 0.1 and ¥ = 0).

6.2. The first-order transitions

The property of the amplitudes Q, and |Q,| that in most of the phase diagram they
evolve towards some ergodic value, enables us illustrate the first-order transitions in
terms of these amplitudes. To fix their values uniquely in the regions 7 < 2v ~ 1
and T < 1 - 2v as well, we consider only the (parallel) evolution in time following
an intitial pure state ¢, (0) = 6.

The equilibrium values found turn out to depend only on {v— 2| (as predicted by
the /1 — v duality). Figure 7 shows as a function of temperature the equilibrium
amplitudes Q4 (upper row) and Q,_ (lower yow) for p=9 and p =10 and |v~ | €
{0,0.1,0.2,0.3,0.4,0.5}. Again, making diffcrent choices for the system parameters
produces graphs which are only quantitatively different from the ones presented in
figure 7. The first-order transitions at v, (T) are reflected in discontinuities in the
amplitudes Q, and @, as soon as v < 1. Only for v =1 (the Hopficld model} and
p = 2 (symmetric interaction matrix) are the transitions second order.
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Figure 7. Equilibrivm amplitudes as a function of temperature (pamllel dynamics,
numerically ilerated following a pure initial state): p = 9, Qq (@) and Qs (¢); p = 10,
Qq @ and Q; @) O, v € {0,1}; A, v € {0.1,0.9); &, v € {0.2,08}; O,
v € {0.3,0.7}; %, v € {0.4,0.8}; x, v =0.5.

The locations in the phase diagram of the two first-order transition lines vy (T)
are found not to depend much on the dimension p, as long as p > 2 (in contrast
to the magnitude of the jumps at the discontinuities). It turns out that in good
approximation the critical lines are given by

vi(T) =5+ TN =T+ 3T - {79 (40)

which are depicted in figure 8, together with the results of locating the first-order tran-
sition by numerical iteration of the paralle] dynamical equations for p € {3,4,9,10}.
The accuracy of the numerical data is A(T, ) = (0.002, 0); within this error margin
there was no difference between the p = 9 and the p = 10 results. The correspond-
ing data for sequential dynamics differ only in the absence of the v < ! transition
line v_(T).
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1 ! T T

v(T)
(D)
0 ! ! |
0 T 1

Figure 8. The first-order transition lines p1(7"), logether with corresponding numerical
dala: O, p=30,p=4, A, p=9,10.

6.3. The attractor period ) for parallel dynamics

Finally we will study, for parallel dynamics, the dependence of the period 2 of the
periodic attractors on the system parameters. For v = 1 (the Hopfield model) we
know that the system will always settle into an equilibrium state. Using the duality of
section 5.2 it now immediately follows that for v = 0 the system will evolve towards
a stable period-p limit cycle, i.e. Q@ = p for v = 0. In order to find the period
for intermediate values of » we will make an ansatz for the solution of the dynamic
equations (9), which is inspired by the numerical results of the previous sections:

[u——wt+¢]
P

g, ()= ] fle+1]=fl] (Vo) (41)

which simply amounts to assuming (quasi-) periodic trajectories with constant velocity
(symmetric in the pattern indices). The period §2 can be written as 2 = p/w. If we
now assume that the pure states are in the domain of attraction of the limit cycle
(41), we can again use the results of section 5.2 to obtain

p-w ] L [(l—w)t+2+ ¢, —u
f[ P ]_f[ P ]

(where we have fixed the phase of the function f by putting ¢, = 0). From this
relation we can deduce d¢, /dv = 0 (by considering u = p, t = 0) and flz] =
F{e&+ 2)/p— z] (by considering ¢t = 0). Finally we arrive at

; [u;__z] s [ﬁ;ilfﬂi] (¥ 1.1, ).

If our ansatz is correct and if the corresponding period is the smallest £ such that
the actuai solution can be written in the form (41}, we may conclude

Wiy = 1- Wy, (42)

which relates the limit-cycle periods in the upper half of the phase diagram to the
periods in the lower half. In particular we have: wy = 1, wy 5 = §, w; = 0 (o, in
terms of periods: Q, = p, Q45 = 2p, §; = ).
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In order to calculate w, = p/Q,, explicitly, we will have to insert the ansatz (41)
into the dynamic laws (9):

p-wt—w
=5

(43)

Since ¢ and t can only have discrete values, the problem of calculating f and w from
(43) is well defined only for large p and upon assuming continuity and continuous
differentiability of f. Therefore we will restrict ourselves to the large p case and
expand (43):

.........

tnbute mcreasmgly smaller powers of P, gwes two equauons

r[e=] = <£,, tanh [Bgé,\f E ‘p“"’” >€ (44)
o et L=2t] oy = 2205y =]

x<{#£p{1—tanh2 [ﬁZA:gAf[’\;“’t”}>g+..._ (45)

Finally we expand (44) for ¢ = 1 in w/p and choose in (45) ¢ = 0:

i3] = (o pmes B])), w

I Y S
I [;J+U(p )_gz;f [;J\E“ 1I—ta.nll [

*t?

wf [g] +0(p™)
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Equation (46) shows that for large p the shape of the periodic ansatz (41) corre-
sponds to that of one of the spurious fixed- points of the Hopﬁcid model. Combining

amuatimano e £A T -V | 3 alda

equations (47) and (48) immediately yields the lﬁi’j;e p expression for the relative

sequence velocity w = p /{h:

(48)

limw,=1-v, 49)

preco

In terms of periods: Q, — p/(1 — v) for p — oo. The derivation leading to this
result is far from being rigorons; several assumptions on the large » hehaviour of
the expansion terms of (43) were made (of the type: q,(t+ 1) — ¢, (1) = O(1/p)).
However, numerical experiments show that expression (49) describes the actual values
of the attractor periods surprisingly well, even for relatively small values of p. The
only restriction is (as might have been expected) that (49) no longer applics if one
crosses the first-order transition lines v, (7T) (where w becomes either O or 1).

p=9 p=10

T I“T”Tﬂél l

2 , .
OE...II..I.,LI.W"

0O 2 4 6 8 1 2 4 6 8 1
T T
Figure 9. The relative sequence processing speed p /S as a function of temperature for

¥ = 0.1 10 0.9 (top to boliom, Ar = 0.1) and parallel dynamics. Note that equation
(49) predicts p/Q =1~ v in the limit of large p.

Figure 9 shows the result of determining the relative sequence speeds w = p/Q2
numerically (after iteration of the mappings (9)) for p = 9 and p = 10, as a function
of T. The values chosen for » ranged between 0.1 and 0.9 (Av = 0.1). These
results show that, away from the first-order transitions, expression (49) hoids in good
approximation. The only influence of the temperature on w (and §2) seems to be that
T determines whether or not the first-order transition lines have been crossed. Once
in the middle region of the phase diagram (v_(T) < v < v,(T)), the attractor
periods will depend on v only. Taking the effect of the possible crossing of the
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transition lines 4 (T) (by variation of v/) into account, one arrives for large p at the
relation depicted in figure 10. The positions of the discontinuities depend on 7" and
are given by (40). For finite p one must, in addition, take into account that near
T =1 the system might evolve towards the full mixture fixed-point g*.

1

o i Kl

~ :

£,

=2

@

@

B L i

»

O

o

®

3

B‘ 1

® .

"30 ! |
0 v. ve 1

v

Figure 10. The large p relation between the relative sequence processing speed p /2
and v (parallel dynamics; the temperature dependent locations ¢ of the discontinuities
are given by the first-order transition lines v4(T)).

7. Discussion

In this paper we have studied the competition between pattern reconstruction and
sequence processing in an Ising spin mode! of a neural network in which the interac-
tion matrix is composed of a symmetric Hebbian term and a non-symmetric transition
term. For p = 2 analysing the model became trivial; due to its periodicity the p = 2
transition term is symmetric and we could both solve the dynamics and calulate the
free energy.

The behaviour of the p > 2 model with parallel dynamics can be described as
follows. For each temperature T < T_ = 1 there are three regimes in terms of the
relative weight v of the two terms in the interaction matrix (v = 1: symmetric term
only, v = 0; transition term only). Near v = 1 (dominating Hebbian term) the
system goes to a fixed-point; the only effect of the presence of the transition term is
that this fixed-point will have non-zero correlations with all patterns involved. Near
v = 0 (dominating transition term) the system goes to a period-p limit cycle; the only
effect of the presence of the Hebbian term is that this limit cycle will have non-zero
correlations with all patterns involved. In the intermediate region the system either
goes to the full mixture fixed-point ¢ = ¢{(T)(1,...,1) (for p sufficiently small) or to
a limit cycle with a period 2 in between the two extreme cases: £ € [p, oc]. For large
p we have derived an asymptotic expression for this period; numerical iteration of
the dynamic equations shows this expression to hold in good approximation already
for p ~ 10. The transitions between the three regions are first order. In the
limit p — oo the full mixture fixed-point will eventually become unstable for all v,
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T < 1. 1t turned out that all dynamic solutions of the macroscopic laws for the order
parameters (overlaps) in the region v > are related to the solutions in the region
v < 1 by a time-dependent unitary transformatron which explains the symmetry of
the phase diagrams.

The behaviour of the p > 2 model with sequential dynamics is different. Near
v = 1 (dominating Hebbian term) the system again goes to a fixed-point which
has non-zero correlations with all patterns involved. If v is lowered (increasing

sy o I $mneoidioem $asee PR U, I . R PP,
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goes to the full mixture fixed-point ¢ = ¢(T)(1,...,1) (for p sufficiently small) or to

a limit cycle {for p sufficiently large). In the hmit p — oo the full mixture fixed- pomt

will again eventually become unstable for all v, T < 1. In contrast to the previous

situation, there is no symmetry in the phase diagram corresponding to the interchange

of the Hebbian term and the transition term; accordingly there is no evidence for a

second first-order transition in the region v < 1. An interesting result is the very

presence (for p sufficiently large) of stable non-stationary limit cycles; intuitively one

would expect that without stabilizing mechanisms sequential dynamics would always

drive the system towards the full mixture fixed-point.

If we compare our results with those obtained in [11)] and [12] for the symmetric
version of the present model, the most important difference (apart from the presence
of stable non—stationary trajectories) is the absence in the present model of zero
temperature v < fixed-points with a finite number of non ZEero components. At
T =0 we find that there are pure fixed points for v > and only fully symmetric
fixed-points for v < 1. Fixed-points of the type encountered in the experiments of
Miyashita [13] are found only for 0 < T < 2v — 1; these fixed-points have non-zero
components only (although only two or three components turn out to be noticably
non-zero).

In spite of the non-symmetry of the interaction matrix it turned out that it still
contained enough structure to enable us to build a comprehensive picture of the
system’s phase diagram. The two most important building blocks for our analysis
are (a) the fact that in all of the region T > 2 — 1 we could prove all possible
fixed-points to be symmetric in the pattern index (whatever choice of dynamics); and
(b) the duality between the dynamic solutions for para]lel dynamics with respect to
interchanging the relative weights of the two terms in the interaction matrix (caused
by symmetries in the dynamical laws for the evolution of the order parameters).
If we examine more closely the statistical properties of the stored patterns (in this
paper the patterns were chosen to be drawn at random) that were really essential
for our analysis, it turns out that the only requirement for being able to generalise
our calculations to the case of more general definitions of patterns is that the pattern
correlation matrix C must commute with S, and therefore must be a Toeplitz matrix,
ie. C,, = g(u — v) (for some periodic function g). This means that as a next
step we might analyse the behaviour of the present model for those situations where
subsequent patterns are correlated (which will be the subject of a future paper).

8. Appendix: uniqueness of the fixed-point
In this section we show that for 7 > 2 — 1 any fixed point g # 0 of the fixed-point

equation (16) must have the property: g, = g, for all A and . This immediately
leads to the conclusion that the only non-trivial fixed points are +¢*. Suppose that
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two real-valued p-dimensional vectors g and k are related by

q = {§ tanh (B¢ - k),

where (as throughout the paper) the vectors £ are drawn from the set {—1,1}” with
uniform probabilities, then the following identitics hold:

/0 — ,_
Q- a0 = \tanh [ﬁ(ku-k,\nﬁ >, 5,,ka) . (50
£

PEB,A

For T > 0 these enable us to conclude

sgn(q, — q,) =sgn{k, — k,) Ve, A
{q#—qA|stanh(,6|k“—kA[)gﬁ[k“—kkl Y, A

In our case the fixed-point equation (16) is obtained by making the identification
k = Agq, which yields

sgn(q, — q)) =sgn ((Aq), — (Aq),) Vi, A
lg, —a,] < tanh(8l(Aq), —(Ag),]) < BI(Aq)

From these relations one can derive many conclusions on the dependence of the
possible fixed-points on properties of the matrix A. For the Hopfield model [2]
(A = 1) these relations are empty statements; however, in general they turn out to be
rather restrictive. Here we will proceed by making for A the choice A = v+ (1—-v)8
(with v < 1), with the result

sgn(q, — ax) = sgn [(q, ~03) + (1 = v)(quoy —as_1)]  Vu, A (mod p)
lg, — x| < Blv(g, — @) + (1= v)(g,_1 — ax-1)l Yy, X (mod p).

From these relations, in turn, it follows that for all A, (mod p):

T—-2u41

2
T (g, =q,)" >90. 51

= -, —a, — . )
= ¢, 0r (g, — 0)(9, — ¢ + 9 ) i

Gu-1— Q5-1

W

2
TA 13

For T' = 0 we can also arrive at (51); in this case it follows from (50) that

(q,u - q)\)(ky. - k}t) 2 0.

Insertion of k = Ag with A = v 4 (1 — v)S gives inmediately the T = 0 version of
(51). Therefore (51) holds for all T > 2v — 1.

Relations (51) turn out to be sufficient for proving that ¢, = g, for all A, » (the
following version of the remaining proof we owe to David Rabson). Suppose that the
components of g are not all the same. It then follows that an index p exists, such
that

g, < qx (VA) Qpy1 > 9,

We can now proceed by induction: if for any given n > 0 we know that g, > ¢q,_,,,
then upon choosing # = p+ 1 and A = p — n equation (51) tells us that

Qo1 T 9, 2 Qo+ Tpny
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Qo+1 > Qp—n-1 + Qp-n "9 2 Gpn-1-

Repeating the argument shows that the propositions q,,, > g, and g, < g,V will
inevitably lead to the contradiction q,,, > q,.,. The final conclusion must be that
if T > 2v—1 then all components g, of a solution g of the fixed-point equation
(16) must be equal: therefore the only non-tr rivial fixed-points are g = +gt.

must be equal; therefor non-trivial fixed-points are
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