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0x1 3Np, UK 

Received 14 May 1992 

AbslmeL We study an lsing spin neural network model in which the interaction matrix 
wnsisls of a symmelric Hebbian term (which favours lhe ~mnstmction of Salic paltems) 
and a non-symmelric transition lerm (which favoun limit cycles mrresponding to the 
processing of paitem sequences). We OICUI~IC phase diagrams and analyse the relation 
klween the relative weight of lhe Ewo mmpeting wnlribulions 10 the inleraclion matrix 
and Ule fxquency of lhe periodic altmaors. 

1. Introduction 

king spin models for neural networks have made a significant contribution to our 
understanding of parallel information processing in nervous tissue. Following the 
pioneering work by Little [l], Hopfield [2] and Amit a af [3] many such models have 
been constructed and analysed. Representing the states of neurons as binary variables, 
which evolve in time according to a stochastic local field alignment, may be a crude 
simplification of biological reality. On the other hand it often allows for a detailed 
quantitative analysis. Choosing simple neural variables { s i }  enables one to choose 
more complicated synaptic interaction matrices { J i j ) ,  and vice versa. A common 
feature of most statistical mechanical models for neural neworks is the separability 
of the interaction matrix, which naturally leads to a convenient description in terms of 
macroscopic order parameters. A second important property shared by many models 
k the symmetly of the interaction matrix. If J is symmetric, then the stochastic local 
field alignment obeys detailed balance and one can immediately apply equilibrium 
statistical mechanics. The system's phase diagram can be understood in terms of the 
minimization of some scalar quantitity (in equilibrium to be identified with the free 
energy). The system will always evolve to some equilibrium configuration, even if in 
the thermodynamic limit ergodicity is broken. If, on the other hand, the interaction 
matrix is not symmetric, then the microscopic probability distribution will again evolve 
in time to some equilibrium solution; detailed balance, however, no longer holds. In 
the case of ergodicity breaking in the thermodynamic limit (i.e on finite timescales) 
the system might end up in limit cycles or even in chaotic trajectories. It will no 
longer be possible to apply equilibrium statistical mechanics or to think in terms of 
some scalar quantity being minimized. One must study the dynamics directly, as 
in [4]. 

03054470192f.215493+34H)7.50 0 1992 IOP Publishing U d  5493 
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In this paper we analyse an king spin neural network model (of N spins) in which 
the interaction matrix consists of two terms: a (symmetric) Hebbian [SI term, which 
tends to stabilize a given set of p patterns, and a (non-symmetric) transition term, 
which tends to create period-p limit cycles (or sequences) composed of the Same set of 
p patterns. Clearly there will be a competition between the two tendencies, mntrolled 
by the relative weight v of the two competing terms. There are several motivations 
for studying this particular model. The first motivation is that competition between 
incompatible physical processes usually leads to interesting phenomena (the Hopfield 
model itself is, in fact, based on competition between fixed-point attractors); nice re- 
cent examples in the context of neural network models are the papers by Dotsenko [6] 
(competition between the Hebb [SI matrix and the pseudo-inverse [7] matrix) and by 
Evans et a1 [8] (competition between the Hebb matrix and a symmetry transformation 
term, in order to achieve invariant pattern recognition). In both of these examples, 
however, the competition is between iwo ymmetric matrix contributions, wnereas the 
present model involves competition between a symmetric term and a non-symmetric 
term (i.e. competition between fixed-point attractors and non-stationary limit cycles). 
The second motivation for studying the present model is that it arises naturally in the 
context of modelling chemical modulation in neural systems 191. If during a Hebbian 
[5] leaming phase both static pattems and sequences of patterns are presented to a 
1 , t , L W U l n  W l l l l  U Q . I I J I I I I U L U I I  UC,QJ", Lilt,,, "IW I I C L W U I  & W111 uc"c1Uy ,,,l~,QC,,",,J WLIIL.,, 

are a combination of a Hebbian term and a transition term. Furthermore, due to the 
incorporation into the model of chemical modulators (as in [lo]), the relative weight 
of the two terms will be a function of the actual chemical setting in the recall phase. 
Consequently, studying the effect of neuromodulators on the information-processing 
properties of such a model implies studying the physics of the present model as a 

the intel3lcrion mztrix. =.e th.ira_ 
motivation for studying the present model presented itself a posteriori when reading 
the recent papers by Griniasty ef al Ill] and Cugliandolo [12]. These authors show 
that experiments on monkeys by Miyashita et a1 [HI, which demonstrate that se- 
quentially learned stimuli of uncorrelated patterns can produce correlated attractors, 
can be explained by Ising spin models in which the interaction matrix is exactly the 
symmetric part of the matrix in our model. Since the authors seem to have put in 
the symmetry of their interaction matrix to  simplify the analysis, the present model 
can be seen as a natural next step in explaining the aforementioned physiological 
data. Finally, we would like to emphasize that, in general, non-symmetric models 
built around transition matrices (constructed for explaining temporal association in 
nervous tissue) are far less intensively studied than symmetric attractor models. A 
nice overview of the theory developed in this field (until 1990) can be found in [14]. 
In particular, the model studied in the present paper can be seen as the zero delay 
limit of the one introduced by Sompolinsky and Kanter [IS]. Only recently have some 
authors tried to go beyond simulation studies and the analysis of some specific types 
of dynamic solutions to the macroscopic equations, and to perform a more thorough 
mathematical analysis of the physics contained in such models (16-18]. 

This paper is organized as follow. In section 2 we define our model and the two 
types of stochastic local field alignment considered (sequential and parallel) and derive 
.the corresponding macrosco ic evolution laws for the order parameters (restricting 
ourselves to the case p Q P N) in the thermodynamic limit N - 00. We solve the 
case p = 2 directly (which is a trivial case in the sense that the order parameters 
decouple). In sections 2 and 3 we analyse the types of ked-points possible in terms 

~,+..mrL ..&I. hn-nr:n:, . -  A a l - . -  rlrn- A:" I n i . . ~ - l .  ... : I t  rln..nln- :...,.-n.+:-Io ... L:^L 

function of fie relative weight L, of the &yo terms 
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of a T/u phase diagram (where T is the temperature) and their stability properties. 
Apart from a second-order phase transition we show that for p > 2 there is also a 
fust-order transition. In section 5 we exploit symmetries of the pattern distribution, 
which enables us to explain for parallel dynamics a symmetry of the phase diagram 
and to show that all dynamic solutions of the macroscopic equations in the region 
U > f (where the Hebbian term is the more important one) are related to the 
solutions in the region U < 3 (where the transition term is the more important one) 
by a time-dependent unitary transformation. Finally in section 6 we present results 
of numerical iteration of the macroscopic laws and we analyse, for parallel dynamics, 
the relation between the relative weight U of the two contributions to the synaptic 
matrix and the frequency of the periodic attractors. 

2. Model definitions and evolution of order parameters 

21. Model definitions 

Our model will be an Ising spin neural network of N spins s i  E {-l,l]. If neuron 
i is at rest we put si = -1; if neuron i is firing we put si = 1. We will study a 
system that has learned a given set {(P) ( p  = 1 . .  . p )  of patterns If 
the learning stage consisted of two Hebbian [SI phases, a first one during which the 
patterns were learned as static objects and a second one during which the patterns 
were learned as dynamic objects, the final connection matrix (representing the synaptic 
interactions between the neurons) will be 

E { -1 ,  

or 

A,, E u6,, + ( 1  - u).Spp S,,, E 6,,,+, (11 : mod p). (2) 

If we define 0 < U < 1 the parameter U will enahle us to interpolate smoothly 
between the familiar and analytically well understood Hopfield [2] model (U = 1) 
and the far less intensively studied sequence processing model (U = 0). 

We will consider two types of rules for the evolution in time of the microscopic 
state probability p , ( s ) ,  both based on stochastic low1 field alignment with the local 
fields as given by (3) 

N .. 
h i = x J i j s j .  

j = 1  

First we will take time to be a continuous variahle and define the evolution in time 
of PI(#)  by the master equation: 
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where F;. is the spin-flip operator, i.e. FjQ(sl,. . . , s N )  5 Q(sI , .  . . , - s . ,  I . . . , S N ) .  
and the transition rates wj(a) are defined as 

wj(a) E $[I - t anh (ps jh j ) ] .  

The second vpe of dynamics considered h a parallel stochastic local field alignment 
in the form of a Markov process; now time is a discrete variable: 

p,+,(a) = C45' - a)p,(a'). 
.' 

The transition probabilities w(a' - a) are defined as 

N 

w(s' -+ a) E n ;[I + s j  t an~ i (ph ; ) ] .  
j = 1  

Since for p > 2 the interaction matrix (1) is non-symmetric one cannot define a 
Hamiltonian such that the stochastic local field alignment becomes a Glauber dynam- 
ics; therefore equilibrium statistical mechanics is not applicable. In order to analyse 
the system's dynamics we will introduce y macroscopic quantities for describing a 
given macroscopic state a: 

N 

In terms of these macroscopic variables we can now write the local fields hi as 

hi = E ; .  A q ( s )  

this paper we will assume p (the number of patterns stored) to obey 

2.2. The macroscopic laws 

Following the derivations in [4] and [19] we find the evolution in time of the macro- 
scopic quantities q to become deterministic in the thermodynamic limit N - 03. For 
case (4) the evolution in time is governed by the set of coupled nonlinear differential 
equations: 

where ti  E ( t t , . . , C P )  E {-1,1}7'. For the case of a parallel Markov process (5) 
one finds a set of coupled nonlinear mappings [20]: 
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If, furthermore, the pattern components ,$‘ are drawn at random from {-1,  l), we 
find in the thermodynamic limit equation (6) being replaced by (8) and equation (7) 
being replaced by (9): 

( @ ( E ) ) ,  = 2 - p  c @ ( E ) .  
E € t - l , l P  

For future use we will briefly indicate some of the properties of the matrices 
encountered. For the index permutation matrix S (2) one finds 

s + s = s s t = 1  s p = 1 .  

Since the Hermitian part ;(A + At)  and the anti-Hermitian part f ( A  - At)  of the 
matrix A (2) commute, it must have a complete set of orthogonal eigenvectors {In)). 
Thii set tllrns out to be 

In) (I?:, . . . , “) n = 0,. . . , p  - 1 

In a subsequent section we will also encounter the index permutation matrix IC: 

I < A #  = 6A,p+l-p ( k ~ :  mod P) 

for which 

I< = ICt I P  = 1 l{,S I<- = .S’t ICSt I< = s 
IfJn) = e z r i n ’ p l p -  1 1 ) .  
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23. A toy problem: fhe symmetric case p = 2 

Solution of the model becomes straightforward if p = 2. Now there are only two 
order parameters, which decouple. Since p = 2 is exactly the situation where the 
interaction matrix { J i j }  k symmetric, one can perform a thermodynamic analysis. 

q1 f q2, one finds, after performing 
the pattern averages involved, that both dynamic laws (8) and (9) decouple into 
independent one-dimensional evolution laws. In the case of sequential dynamics one 
obtains in terms of the new variables: 

A C C Coolen and D Shemngton 

Upon introduction of the variables :* 

d 
-:- = tanh[/7(2v- 1):-] - L -  d l  

d 
-z+ = tanh[P:+] - :+ 
dt  

whereas in the case of parallel dynamics one obtains in terms of z*: 
- :Ll = tanh(Oz:] z * + ~  = tanh(P(2v-  1)zJ. ('3) 

If we now define m[P] as the non-negative solution of the transcendental equation 
m = t anh [pm]  we can describe the asymptotic behaviour of (12) and (13) as follows: 

Sequential dynamics 

l < T  2: -3 0 

2 v - l < T < l :  :: - sign[:o+]m[P] 
:; - 0 

:: - sign[:o+]m[~] 
:; -+ sign[:Jm[/3(2u- 1)) 

( t  - CO) 

( t i  CO). 

0 < T < 2 ~ -  1: 

Parallel dynamics 

l < T  :: - 0  

IZv- 11 < T < 1: 2: - sign[:o+]m[P] 
:; - 0  

0 < T < 2 v -  1 : :$ i sign[ro+]m[P] 
rl - sign[z;]m[/3(2v- I ) ]  (1 - CO) 

:: --t sign[:o+]m[(j] 
r; -+ (-1)'sign[zJm[fl( 1 - 2v) ]  ( 1  - CO). 

- 

0 < T <  1 - 2 u :  

In the case of sequential dynamics we may conclude that there are two second-order 
phase transitions at the lines T = 1 (where the system goes from the paramagnetic 
state to an ordered state which is equally correlated with the two patterns) and at 
T = 2v - 1 (where the system enters the region in which the two patterns can be 
distinguished). Both transitions correspond to continuous bifurcations of new k e d -  
points. The system will always approach an equilibrium configuration (as it should 
be). In the case of parallel dynamics there are three continuous transitions: at the 
line T = 1 (where the system goes from the paramagnetic state to an ordered State 
which is equally correlated with the two patterns), at T = 'Lv - 1 (where the system 
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enters the region in which the patterns can be distinguished) and at T = 1 - 2u 
(where there is a transition from the region of the equally correlated fixed-point to 
that where the system will Row towards a period-2 limit cycle), with a triple point 
at ( T , v )  = (O,+),. ,The transitions at T = 1 and T = 2~ - 1 are again ordinary 
second-order transitions, indicating the continuous bifurcation of a new fured-point. 
The transition a t  T = 1 - 2u is of a different type (the system goes from a fixed-point 
into a limit cycle). 

'Ine aiternative approach (oniy appiicabie in the present case p = 2) is to perform 
a standard thermodynamic analysis. The symmetry of the interaction matrix allows  IF 
to conclude (after elimination of the diagonal elements J i i )  that for the sequential 
evolution in time (4) the equilibrium probability distribution is the Gibbs distribution, 
with the Hamiltonian H: 

- 

Using the standard procedures [3] one can now calculate the free energy per spin 
f[P] % -( l / P N )  log ZN[/3] in the thermodynamic limit N -+ 03 (for p fixed). Intro- 
duction of the auxiliary variables z, q1 fq, leads to a factorization of the partition 
function Z N [ p ] ,  in which the summation over all possible spin states decouples into 
independent summations Over the spin states in d&"ected sublattices I,: 

I, z {i = 1,. . . , N I (: = &$). 

The final result is 

I 1 + - -(2u- 1 ) z l -  -Iogcoslr[j3(2v- 1)z-] 
2 2  P ('4) 

where the order parameters z+ I q1 +C (1, are those solutions of 

z+ = tanh[/3r+] 

that minimize expression (14). We can now understand the dynamics of the order 
parameters in terms of free energy minimization. The ground-state energy per spin 
E, is obtained by taking the limit 13 - a3 in (14), with the result E,, = -: (for 

In the case of parallel dynamics (5) it has been shown [ Z l ]  that the equilibrium 

z -  = tanh[[3(2v - 1)f-I 

U < $) and Eo = - $ v  (for Y > i-). 1 

probability distribution is now given by 

Using the above expression we can now again calculate the free energy per spin 
f [ P ]  - ( l / f l N ) l o g i ? , [ p ]  in the thermodynamic limit N - cm (for p fixed). 
Introduction of the auxiliary variables z, 3 q1 f if2 again leads to a factorization of 
the partition function gN[P],  in which the summation over all possible spin states 
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Sequent ial  D y n a m i c s  Parallel Dynamics  

I I 

0 1 
T 

P 

d 

Flgure 1. The p = 2 phase diagrams P, paramagnetic legion, q = 0 M, mixture 
region, q # 0, q1 = 92; H, Hopfield region, q # 0, qI # q2; C. qcle legion, 
q ( t  + 2)  = do. a ( t  + 1)  # d t ) .  

decouples into independent summations over the spin states in the disconnected 
sublattices I,. The final result takes the form: 

1 + - min { c*(:-) - l o g c o s h [ ~ ( 2 u  - 1)z - l )  
2p 2 -  

C * ( 7 n ) ~ ~ ( l + m ) l o g ( l + m ) + ~ ( 1 - m ) l o g ( l - 7 n ) .  

The saddle p i n t s  are the solutions of 

I, = t anh  [P tanh  [p:,]] 
From which one can, in turn, again deduce that 

z- = t anh  [ p ( 2 u  - 1) tanh  [ 0 (2u -  I):-]] 

:+ = t anh  [a:,] 2- = t anh  [ f l (2u  - I):-] . 
Therefore the final expression for the free energy per spin becomes 

(15) 
1 1 
2 a + : (2u-  1)iz - -Iogc.osh[/j(?u- 1)z-I 

in which the order parameters :+ z q ,  f q2 are those solutions of the saddle-point 
equations that minimize expression (15). We can now understand the evolution of 
order parameters for parallel dynamics again in terms of free energy minimization. 
As was the case for the Hopfield model [3] the free energy for parallel dynamics 
is exactly twice the free energy obtained for sequential dynamics. The important 
difference with having sequential dynamics, of course, is the presence of periodd 
limit cycles, which are the consequence of the fact that for parallel dynamics only 
one iteration step is sufficient to perform the state change i- - -- _ _  (which is 
energetically allowed). 

The p = 2 phase diagrams obtained in this section are shown in figure 1. 



Pattem reconsrniclwn and sequence processing 5501 

3. Fixed-points 

3.1. Cridcal temperature 
The fixed-point solutions of (8)  and (9) follow from the corresponding bed-point 
equation: 

q = (€tanh(P€.  AqNe. (16) 
We will first calculate the critical temperature T, z 0;' for the existence of non- 
trivial solutions of the fixed-point equation. For a non-trivial solution q f 0 of (16) 
we find that 

which for q # 0 implies (with T E 0-l): 

In deriving this inequality we have used the statistical independence of the stored 
patterns: (tetp) = 6+z. Since for the matrix A at hand (2) there exists a complete 
orthonormal basis {In)} of eigenvectors (10) we may write 

2 
--axin J p  T < f + $max(n lAtAln)  = $ + v +  (1 - u)e  I = 1 .  

n 

Since for T < 1 non-trivial fixed-points do  exist (as we will see), the critical temper- 
ature (as far as fixed-points are concemed) is clearly T, = 1. 

,*CA, we Wall ,  ,U ,,,,U U U L  ,ww, ,U, 1 \ I ,  I I u I I - L I I * I ' l I  JVlULlUllJ " L  L11V ILIzY-puIII I  

equation (16) bifurcate. If we differentiate both sides of (16) with respect to either 
p or U we obtain 

* .̂  C..A .̂.. L &.- 7 . 1 ^^^ I-:..:.., "̂ ,...:-.." -c .I.̂ G",..l ..-:... 

As a bifurcation parameter one can either take (3 or U. %king / j  as a bifurcation 
parameter a fixed-point bifurcation occurs as soon as iJ,q is not uniquely defined: 
if we take U as a bifurcation parameter we find a bifurcation if <l,,q not uniquely 
defined. In both cases the condition for a new solution of (16) to bifurcate is 

det 11 - Dr(q)Al  = 0. (18) 
Equations (16) and (18) are to be solved simultaneously. 
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3.2. Continuous bifurcations from the wivial fied-point 

Since for T > 1 the only fixed-point is q = 0, we will first consider continuous 
bifurcations from this trivial fixed-point. Since r (0)Ap = 6,, equation (18) turns into 
det 11 - PA1 = 0 or 

A C C Cwlen and D Sherrington 

311) : AIz) = TIz). 

In terms of the basis {In)) (10) of eigenvectors of A this implies 

(n~z) [u + (1  - u)ezrln/p - T ]  = o n = 0,. . . , p -  1. (19) 

If U = 1 we are in fact studying the Hopfield model [2]: A reduces to the identity 
matrix and we need higher order expansions for determining which types of fixed- 
points bifurcate at T = 1 (which turn out to be the well known pure and mixture 
states). However, for U < 1 the ked-point equation (16) is far more restrictive with 
regard to the types of ked-points allowed. If p is odd there is only one solution for 
the above set of equations (19): 1.) = 10) = ( I /&)(  1,. . . , 1)  (with corresponding 
bifurcation temperature Tb = 1); if p is even and v > there is also the solution 
1.) = lp/2) = ( l / f l ) ( l , - l ,  ..., 1,-1) (with bifurcation temperature Tb = 2v-1). 

full mixtures of all stored patterns, respectively, and turn out to constitute solutions 
of the fixed-point equation (16) for any T 

7hese Sc!.:tiOIlS CG-::esposd tO FA!! eve3 mktKes of a!! stare:! pa::e:ns an:! a!ternating 

9+ = 4+[PllO) (20) 

9- S-[PllP/2) (21) 

9' = &(mtanh[Pq+mJji l )  (22) 

q- = J i j (mtanh[ /3(2v-  1 ) q - n i f l )  (23) 

where the amplitudes q+[p] and q-[P] are the non-trivial solutions of 

, _ ,  \-.? - - where m E ( i / p j  zp=, c,,. ine existence oftne non-triviai iiieu-point qf for T < i 
mnfirms our previous statement that the critical temperature for ked-points is indeed 
T, = 1. Note that the alternating mixture exists only if p is even and T < 2u - 1, 
and that in the latter case the two amplitudes are related by q-[/j] = q+[P(2u-  l)]. 

3.3. Continuous bifurcations from the syninierric fued-points 

The next step is to find out whether for T < 1 there exist fixed-point solutions that, 
in turn, bifurcate continuously from either the mixture state q+ or (for p even and 
T < 2 u  - 1) from q-. Since both q+ and q- are solutions of (lG), we can find the 
continuously bifurcating fixed-points by solving 

det 11 - / T ( q * ) A I  = 0 
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and 

Dt[P1 = -2- ([I - nZ] [I - tanhZ(Pqt[Plmfi)]) 
R+IP1 = 2- ([pm2 - 11 [I - tanh’ (Pqt[@]mfi)]) 

P -1  

P - 1  

D-[P] = Dt[P(2v- l ) ]  R-[P] = Rt[P(2u- l)]. 

Having calculated the matrices T(q*) we can now solve (18). First we consider the 
bifurcations from q t :  

312) : {D+[P1+ R+[Pllo)(ol) A l l )  = Tlz). 

In terms of the basis {In)} of eigenvectors of A this implies: 

{DtIP1+Rt[P16,0}{u+(l-u)e z r l n ‘ p  } (nls)=T(nlz) n = 0,. . . , p -  1. 

Therefore (since a bifurcation from q+ cannot, by definition, be in the direction of 
10)): 

,, -.A.”. I + . ( 1  - j e 2 - , % h } .  v n ~  { i , . . , p -  i i :  (niz) = 0 or T =  u . l p j \  

Since T is a real quantity, there can be no continuous bifurcation from qt for odd 
p. For p even the only possible continuous bifurcation from qt is in the direction of 
lp/2), with a corresponding bifurcation temperature determined by 

1 = ( 2 u -  l),BbDt!Pb]. 

As might have been expected, the bifurcation temperature defined by this equation 
is below the critical temperatures for the existence of the WO constituent ked-point 
solutions. 

In the same way one can analyse the continuous bifurcations (if present) from the 
alternating mixture state q- (for p even and T < 2u - 1): 

312) : { D-[P] + R-IPI IP /~ ) (P /~ I )  A I 4  = TIC). 

In terms of the basis {In)} of eigenvectors of A this implies 

{ D-IPI + R-[P16,,,/z} {U + (1 - u)e  ” p  } (711%) = T(nlz) 
- n = U, .  . . , p  - 1 .  

Therefore (since a bifurcation from q- cannot, by definition, be in the direction of 
lP/2)): 

1. e211n/p  Vn€{l , . . ,p-  1 ) :  (nlz) = 0 or T =  D-[P]{u+(l - U )  

Since T is a real quantity the only possible bifurcation from g- is in the direction of 
IO), with a corresponding bifurcation temperature given via 

1 = PbD- [PJ .  



5504 

3.4. Three regions in the T f U phase diagram 

One can conclude from the above bifurcation analysis that for T > 2u - 1 only two 
non-trivial fixed-pints can be found as the result of continuous bifurcations, namely 
fqt  (20). In the appendix we prove that in the aforementioned regime the full 
mixture solutions f q t  are, in fact, the on& non-trivial ked-points of equation (16) 
(which rules out the possibility of discontinuous bifurcations). 

In the remaining regime T < 2v - 1 we have (for p even) already encountered 
the fixed-points f q -  (21) (the alternating mixtures). Since for v = 1 our model 
reduces to the Hopfield model [2], it is to be expected that there will also be fixed- 
point solutions related to the fixed-points of the Hopfield model. As soon as U < 1 
we h o w  that for T > 0 any non-trivial fixed-point q # 0 must have non-zero 
components q, # 0 only, since from the futed-point equation (16) one can deduce 
(with sgn[0] E 0): 

A C C Coolen and D Shem'ngton 

w [ q , , l  = Sgn[vq, + (1 - ~ ) q , - ~ l  (VICL, mod P I  
(q, = 0 j q,-l = 0 3 . . . q = 0) Therefore, pure states and mixtures with only 
a finite number R < p of non-zero components (as in the Hopfield model) cannot 
be ked-points for v < 1 if T > 0. Only for 7' = 0 one can find for U < 1 non- 
trivial fixed-points with a finite number R < p of non-zero components; pure states 
q, I 6,,, for instance, turn out to be fixed-points if U > h. 

We will now make an expansion of the ked-points in powers of g I 1 - U. The 
zeroth order in this expansion will then precisely be a fixed-point of the  Hopfield 
model, and subsequent orders will show how the fixed-points of the Hopfield model 
are modified as one tends away from the line v = 1 in the phase diagram: 

g r l - U :  q r x q , q n  A = l + g [ S - 1 1 .  
n)O 

Insertion of the above expressions into the fixed-point equation (16) leads to recurrent 
relations for the expansion coefficients q,,: 

qo = (€tanh [O€ . ~ 0 1 ) ~  

q,, = 11 - P ~ ( P ~ ) I - '  w(qo)(s - l)qn-,  

. . . ( I .  zk,) tanh(m) [PE.  qo])} ( l a  > 1) 

+ I  = 91 + 1s - 11 Q I - 1  

where the matrix r is defined by (17). Each ked-point qo of the Hopfield model 
thus generates a ked-point q for the present model (in the regime T < 2u - 1) in 
the form of a series expansion in powers of 1 - U. Upon choosing for qo a pure state 
q, ,sq'( l ,O, . . ,O) one finds 

q* = tanh [Pq'] 
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resulting in 

Pq'(1--q*2) (-1,o (..., 0 , l )  
1 - p( 1 - q ' 2 )  

q = q*(1,0,. . . ,O) + (1  - U) 

+ ( -2 ,0 , . .  . , 0 , 2 )  + U(1- u)3. 1 
It is not a priori clear that the proposed expansion in powers of 1 - v will converge. 
However, numerical analysis shows this to be the case for some finite region in the 
T < 2v - 1 part of the T / u  phase diagram. 

We may now conclude that, as far as fixed-points are concerned, there are effec- 
tively three regions in the T / u  phase diagram: 

(i) Region P (T > 1): 

q fixed-point + q = 0 

(ii) Region M ( Z v  - 1 < T < 1): 

(paramagnetic region) 

q fixed-point a q = 0 or q = kq+ (full mixture region) 

(iu) Region H (T < 2u - 1): 

Non-trivial types of ked-points q (Hopfield region). 

An important feature is that for odd p there must be a first-order transition in (or 
at the boundaly of) region H, since we found that the only non-trivial ked-points 
that can be obtained by repeated continuous bifurcations from the T > 1 fixed-point 
q = 0 are the full mixtures q = fq+. Therefore the Hopfield-type fvted-points in 
region H must appear as discontinuous bifurcations. Only for p even is it possible that 
all fixed-points can be obtained from a scenario of repeated continuous bifurcations 
from q = 0. For p = 2 we have indeed found a second-order transition, however, 
for even y > 2 one finds, by solving the fixed-point equations numerically, that the 
bifurcations of Hopfield-type ked-points in region H are discontinuous and therefore 
the corresponding transition is first order (as for odd p ) .  Furthermore, solving the 
fixed-point equations numerically shows that the location of the first-order transition 
line seems not to depend much on the dimension p.  and is in good approximation 
given by 

U J T )  = + T - T2 + 4 9T3 - 4 1T4 

In section 6 we will present numerical evidence for this relation. The resulting 
picture of the system with respect to how the possible fvted-points are determined by 
the system parameters T and U is summarized in the phase diagram of figure 2. 
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Flgure 2 The types of ked-points possible: P,  
paramagnetic region, p = 0; M, mh1ure region, 
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4 Stability of fixed-points 

In this section we will analyse the stability properties of the fixed-points as calculated 
in the previous section for both parallel dynamics (Markov process) and sequential 
dynamics (master equation). In the case of parallel dynamics (9) the criterion for a 
fixed-point q to be stable is 

According to the definition (9) this implies 

where z is real valued and the matrix r is defined in (17). In the case of sequential 
dynamics we have to study the behaviour of (8) around a fixed-point q, which is 
determined by the Hessian matrix. The criterion for a fixed-point q to be stable is 
now given by 

4.1. Stabiliy of the trivial fired-point 

Let us first turn to the stability of the trivial fixed-point q = 0. Since r(0) = 1 (the 
identity matrix) we can conclude 

(the compiete ortnogonai basis {injj being defined in (iOjj. ?“neieh,ie for boiii vpa 
of dynamics one finds: 

T > 1 : q = 0 is stable T < 1 : q = 0 is unstable. 
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4.2. Stabifhy of Ihe fuf& symntelric ped-point: gmerat propflies 

The next fixed-point to be analysed is the fully symmetric mixture state qt (22). The 
matrix r(q+) has been calculated previously (24): 

q * + j  = p i a j  + jpipjpjpi. 

We can always write the real-valued (p-dimensional) vector z in equations (25) and 
06) in terms of the ba5is {In)}: 

P-1 

& - I - /  " p - n  r4l 
e -  FE I,\ ( Y E ;  - - _ L  ** \ - -  

?%=a 

where the proviso zp-,, = z:, reflects the restriction that 2 must be real-valued. The 
full mixture q+ is certainly stable with regard to fluctuations in its amplitude (which 
follows Boom (22)). Therefore we can take zg = 0. The criteria for q+ to be stable 
now become: 

1 <- 
puTij3j' 

E'.;: I% I* RE a, 
L = r  Ix,t l 2  
_ _  1 
7 U - L  

Sequential dynamics: m ax 
;m.Vn: 5,-"=T: 

(28) 

Here the quantities a, are the eigenvalues of the matrix A (11): 

a , ~ v + ( l - u ) e -  2 a i n l p  

- I2 n ~ ~.,n nqn rrm*lidn +hn* r h m  - I l r  U,, .T" -1, w.lr.""I .',"I U'" 
r w n n  +kn 1.. I - r.. i "..A D-.. Va"16 U,* ,C.,(1I,"',D - /,'"I "l" 1 L G U  

maxima in (27) and (28) are obtained by choosing x,, = N S , , , ~  + ~ * 6 ~ , ~ - , ,  which 
enables us to write the criteria for g+ to be stable as follows. 

Parallel dynamics: {U' + (1 - U)' + Zv( 1 - U) c 0 ~ ( 2 n / p ) } " ~  < l/(PDc[P]) 

P-" 

Q9) 

(30) Sequential dynamics: U +  (1 - ~ ) c o s ( 2 ? r / p )  < l/(BD+[@]). 

From these expressions several conclusions can  be drawn already: 

nnmim. _. 
(i) If q+ is stable under parallel dynamics it is also stable under sequential dy- 

(ii) Far Y = 1 the stability properties of q+ are the same for the two types of 
dynamics. 

(iii) If q+ is stable for U = 1 is is stable for all 0 < U < I (for both types of 
dynamics). 

(iv) In the case of parallel dynamics the stability region in the T / v  phase diagram 
of q+ is symmetric under reflection in the iine I/ = 3 (i.e. invariant under U - i - vj. 
The stability properties near the lines T = 0 and 7' = I of g+ can he calculated 
analytically, without having to resort to numerical analysis of the inequalities (29) and 
(30). 

First we will consider T = 0. If y is odd we know from the thermodynamic 
analysis of the Hopfield model [3] that for U = 1 the mixture state qc is stable, 
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Therefore we may conclude that qt must be stable at T = 0 for all 0 < U < 1. For 
even p and U = 1 the state qf is unstable at T = 0 [3],  however, it might stabilize 
for U < 1. In the case where p is even one can easily show that 

A C C Cwlen and D Shem'ngton 

Therefore p D t [ p ]  - 00 as p - CO. For parallel dynamics and p even it now follows 
from (29) that at T = 0 the mixture q+ is always unstable. Eor sequential dynamics 
it follows from (30) that q+ is stable only if p = 2 and U < i. 

We now turn to the stability of q+ near the line T = 1. Expansion of the 
amplitude ¶+[PI in powers of p - 1 gives (22): 

We can now expand p D + [ p ]  near  T = 1, with the result 

This expansion shows that for p > 2: d { @ D + [ / 3 ] ) / d / 3 ~ p = 1  < 0. This, in turn, 
implies that near T = 1 the inequalities (29) and (30) will hold (since the left-hand 
side of both inequalities is always below 1). Clearly for all p > 2 the full mixture 
state q+ is stable near T = 1. 

Having investigated the stability properties of q+ at the boundaries T = 0 and 
T = 1 we will now study the limits p small (i.e. p=2) and p -+ CO. The simplest case, 
for which determining the regions of stability becomes trivial, is to consider p = 2. 
In this case D + [ p ]  = 1 and from (29) and (30) one can immediately deduce: 

q+ stable (parallel dynamics): T > 12u - 11 

q+ stable (sequential dynamics): T > 2u - 1 .  

In order to find the large p behaviour of the amplitude q+[/3] we will have to 
work out the pattern averages in (22) and in the definition of D+[/3] for large p and 
1 < p < m :  

where 
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In order to facilitate the expansion of (31) and (32) we will define: 

4+IP15 qo + q , ( l / p )  + ob-?) 
L ,  E P J  JZ;;t d.2 n e - 2 / z  [ - tan112(/3q,z)] 

Expanding (31) and comparing the first two orders gives (since p > 1): 

Lo = 1 q,[ l  - & I  = +jqa[l + 2 L 2  - L41 
Expansion of (32) in turn gives: 

2 = 1 + -11 - L,] + u(P-z). 
31, 

Note that 

' dl e - ' a ~ 2 r t a n i l ( ~ q o z j  ii - t a r l i l z< ,~qoz j i  < io = I .  J Z G  L 2 = L o - L / J  yo 

We may now conclude &om (29) and (30) that for all /3 > 1 and for all U the mixture 
state q+ will eventually become unstable as p - m, since 

2 = - -[I - L2]  + o ( p - 2 )  
3P 

1 2 
- u - ( l - u ) c o s ( 2 7 r / p ) = - - [ 1 -  L 2 ] + o ( p - 2 ) .  

PD+[Pl 31, 

Apparently the width of the regions of stability near T = I and (if p is odd) near 
T = 0 vanishes as p --* 03. 

We can now summarize the stability properties of q+ (0 > 1) for the limiting 
cases considered: 

(i) p = 2: 

parallel dynamics: qt is stable o T > I2u - 11 
sequential dynamics: qt is stable e T > 2u - I 

(ii) p - 00: q+ is unstable for all 0 < T < 1 
(iii) T = 0 ( p  > 2): 

y even: qt is unstable 

p odd: qt is stable 

(iv) T - 1: qt is stable for all p > 2. 
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p ~ u i c  s'.'2 ,.... 
L ~ Y U ~ L ~  r~unwaricr of ihe iuii m h r e  iixed-poini g+ (V ,  unsiabie; S, 

stable): (a) parallel dynamics, p E {4,6, 8,10,40) (going from V 10 S); (b) 
parallel dynamics, p E {3,5,7,9,11,41) (going from V 10 S); (c) sequential dy- 
wmics, p E {4,6,8,10,40) (going from U lo S); and ( d )  sequential dynamics, 
p~{3,5,7,9,11,41) (going fmm Cl to S). 

4.3. Stabiliv of !he ful& symmetric fixed-point: he full phase diagram 

Having analysed the stability of q+ for both p = 2 and p 4 CO as well as in the limits 
T - 0 and T - 1 we will now study, by solving the relevant equations (29) and 
(30) numerically, the stability properties for arbitrary values of T, U and p. The case 
p = 2 being analysed in full in a previous section, we here focus on p > ?. Figure 
3 shows the regions of stability for the fully symmetric mixture state q+ for parallel 

(c)  or odd (d) .  
First we consider parallel dynamics. For p even (a) there is simply one boundary 

line, separating the stability region (near T = 1) from the region of instability (near 
T = 0). For p odd (b) there are two boundary lines: for small p in most of the phase 

*yz2z;a .*$h ii 2'*eii oi add @;, fGi aequeniia: &yaamics Wiih men 
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diagram the state qf is stable (the exceptions consisting of two small unstable regions 
near v = 0 and v = 1). If p (odd) increases, the two regions of instability grow and 
finally merge. For large p (odd) there are two boundaty lines, separating two regions 
of stability (near T = 0 and near T = 1, respectively) from a region of instability 
(near T = f). Clearly the main difference between p even and p odd is that in the 
latter case there are two separate regions of stability. Apart from this difference, for 

the fixed-point qt will eventually become unstable for all (T, v) as p + m. 
Next we consider sequential dynamics. For p even (c) there is again one boundaty 

Line, separating the stability region (near T = 1) from the region of instability (near 
T = 0). For small odd p (d) in most of the phase diagram the state qt is stable 
(the exception being a small unstable region near v = 1). If p (odd) increases this 

two regions of stability (near T = 0 and near T = 1, respectively) from a region of 
instability (near T = i), Again the main difference between p even and p odd k 
that in the latter case there are two separate regions of stability (if p is sufficiently 
large). Apart from this difference, for large p the results for 1, even and p odd are 
again similar in the sense that in both cases the fixed-point q+ will eventually become 
unstable for all (T ,v )  as p + m. n e s e  results confirm the limiting properties 
derived analytically in the previous section. 

If we compare the outcome of the two types of dynamics we observe that in the 
case of parallel dynamics all stability regions are symmetric with respect to reflection 
in the line v = f (in contrast to the stability regions for sequential dynamics). As will 
be shown in the next section, this symmetry in the phase diagram can be understood 
as being the result of symmetries of the underlying dynamics. A further surprising 
result is that for p -+ 00, even in the case of sequential dynamics, in all of the region 
2v - 1 < T < 1 the system will evolve towards a non-stationary solution of the 
dynamic equations (since all fixed-points are found to be unstable). Most studies 
published so far, in which the reproduction of sequences of random unbiased pat- 
terns with sequential dynamics is studied, conclude that without additional stabilizing 
mechanisms (or a complicated matrix as in [221) the v = 0 system will evolve towards 
the fully symmetric mixture state. However, these conclusions are based on simula- 
tion studies with rather moderate values for p. whereas the stability of non-stationary 
solutions (according to figure 3) requires p to be sufficiently large. 

It must be emphasized that stability of the fied-point qt does not automatically 
imply a large basin of attraction. For instance, numerical iteration of (9) shows that, 
although for odd p the fixed-point q+ is stable near T = 0, in this region of the 
phase diagram the unstable pure states q,, = 6,,, are in the domain of attraction of 
limitcycle attractors. If one, finally, studies the stability properties (for p even and 
T > 2v - 1) of the alternating mixture q - ,  one finds this fwed-point to be unstable 
for all T.u. 

( n m n  - thn mc.il+r fnr ~ _,an n n A  nrtrl q-0 o:-:ln- :n tL- rLnr :I L-th c+cnc 
*..&U y L M U  .W".W ."a y C...,ll Yll" y W" a,., .x11111'l1 ,I, L U G  - I I J c  " I a L  " I  "VL.1 -0- 

regin. of itszhilit;, gclvr. %r !2rg p (Gdd) there arc two bC!...?a!y !i.e., sep2r.ti.g 

5. Symmetries 

In this section we will exploit the symmetries in the distribution p of the vectors and 
establish relations between the solutions of the nonlinear dynamical laws. Apart from 
WO trivial operations (index shift S and reflection in the origin) we show that, for 
parallel dynamics, there is a duality that relates all trajectories in the upper part of 
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the phase diagram (U > 4) to the trajectories in the lower part of the phase diagram 

A C C Coolen and D Shcmngton 

(v < 9 
5.1. S)m"mtty mappings 

The set G is defined as the set of all linear transformations G under which the 
probability distribution p(E)  is invariant: 

G E F : p ( G € ) = p ( € )  V € € { - 1 , 1 } '  

It consists of all combinations of reflections in the elementary planes EA = 0 and axis 
permutations. Each element G in G is a matrix of the form: 

G,, = C,6,.r(p) c, E {-I, 1 )  

II : 11, .  . . , p }  - 1 1 , .  . . , p }  

If G E G one can deduce that 

(invertible). 

G(€ tanh [PE . = ( E  tanh [13€ . GAql)( 

We can now define symmetry mappings in the following way: G E G is a symmetry 
mapping if and only if 

3G'c C such that Vv E [0,1] : C A ,  = A,(,,)G' for some -,(U) E [ 0 , 1 ] .  

In this section the matrix A will carry as an index the value of the parameter U, 
used in its definition (2). The reason is that we will be considering relations between 
successive state vectors in systems which are different with respect to this parameter. 
The above definition selects from the set G those mappings that enable us to relate 
the right-hand side of (33) in turn to the evolution in time of some state vector G'q. 
Using the general form of the matrices G E G one can show that the problem of 
finding all symmetry mappings (i.e. all G E G such that (34) holds) has two types of 
solution only: 

y = U :  [ G , S ] = 0  G'= G 

y = l - U :  SG=GS' G ' = G S  

with the permutation matrix S, defined in (2). Again we can use the general form of 
the matrices G E G to calculate these two types of solution explicitly: 

(35) y = U :  G = G ' = f S "  ( n  = 0,&1,*2,  . . .  ) 

y = l - U :  G = *IiY G'= G.S (11 =0,*1,*2 ,...) (36) 

where 

I < A , p  E 6A,p+l-p ( mod Y). 

Some of the properties of the matrix Xi in relation to 9 ,  S t  and the basis {In)} are 
given in section 2. 

The set of symmetry mappings (35) with y = U is generated by thc two operations 
1-1,s) (note: St*& = SP-"). They imply the following 
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(i) If the vectors {qo ,q , ,q2 , .  . .} correspond to a solution of the parallel dy- 
namics (9) for a certain value of the parameter U, then the same is true for 

(ii) If the eajectory q( l )  corresponds to a solution of the sequential dynamics (8) 

These relations reflect more or less trivial symmetries of the problem. 
The second (non-trivial) set of symmetry operations (36) with y = 1 - U  is, apart 

from the two operations {-1,s) we have already discussed, generated by the matrix 
K. In the case of sequential dynamics relation (36) cannot be used for establishing 
relations between different solutions of the  problem (8). In the case of parallel 
dynamics, however, we can deduce from (36) the statement 

(iu) If the vectors {qo, q l ,  q 2 , .  . .} correspond to a solution of the parallel dynam- 
ics (9) for a certain value of the parameter v,  then a solution of the parallel dynamics 
for the vaiue i - U is given by {Icq,,, S K q , , S 2 i < q 2 , .  . . , s * * ~ q , , .  . .I. 

Apparently for parallel dynamics there is a well-defined correspondence between 
the solutions of the evolution equations for the order parameters q in the upper part 
of the T/u phase diagram and the solutions in the lower part of this phase diagram. 
This might have been guessed from the symmetry of the stability diagram of the full 
mixture fixed-point q+. 

5.2. Parallel dynamics: the u / l  - U dualily 

We will now show that for parallel dynamics there is actually a 1-1 correspondence 
between all solutions of (9) in the upper half of the T / u  phase diagram (U > f) 
and all solutions in the lower half of the phase diagram (U < f). We will first define 
the set t, of solutions for a given value of the parameter v .  Consider an infinite 
sequence Q of pdimensional real-valued vectors: 

{-~03-~1,-~z~...l and {Sq,,Sq,,sq, ,... 1. 
for a certain value of the parameter U, then the Same is true for - q ( l )  and Sq(l) .  

-_ ., 

Q = {90,4*.92>...1. 
The set of all such sequences will be called C. The set C,, c C will now simply be 
the set of all sequences Q E C, such that the constituent vectors q, correspond to 
successive iterations of the parallel dynamics (37) for the parameter value U: 

4, E { Q E L I Vn. 2 0 : qn+, = (t tan11 I/% ' A,,q,,I)t . (37) 

Clearly each sequence Q E C, is completely delined by its first state vector q,,. In 
terms of the sets (37) we can write the correspondence relation resulting from (36) 
as 

Q E C "  3 'Z'QELl-,, 

where the linear operation D is defined as 

2,: c - c  

vn .20:  [DQ], ,  E D,,q,, n,, I S" I< (38) 

Since the matrices D, are Hermitian and unitary it immediately bllows from the 
definition (38) that: 

vz = 1 
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which implies that for each d u e  of U there is a 1-1 correspondence between all 
elements in t, and all elements in (a duality between the sets tu and I:,-,): 

A C C Coolen and D Sherington 

Q E .Cv 'DQ E I:,-,, 'W)Q) = Q. (39) 
It s clear that the stability properties of Q = { g o ,  q 1 , q 2 , .  . .) E tu and 'DQ = 
{q;q; ,q; , . .  .) E I:,-, must be the same, since 16q:,I = ID,6qnl = 16q,,I. 

A sequence Q = {qo,ql,qz,. . .) E I: will be. called I-periodic if V n  3 0 : 
qn+, = q,. A sequence Q = {go, q l ,  q 2 , .  . .) E L corresponds to a fixed-point of the 
dynamics (9) if Vn > 0 : q, = Po. We will now simply list a few of the properties of 
the duality 2, which can be easily verified: 

Q = { q o l q i r q z , .  . .) 
(i) V n  2 0 : lqhl = lq,l; 
(ii) Vn > 0 : (01q;) = (Olq,);  
(is) V n  2 0 : (P/zIqh) = (-1)"+'(p/219,,); 
(iv) Q is I-periodic 3 'DQ is Ip-periodic; 
(v) Q is Ip-periodic 9 'DQ is Ip-periodic; 
(vi) Q represents a fixed point j 'DQ is p-periodic; 

"Q = {qb>q:,q:,. . .) 

(vii) D { q + , q + , .  . .) = { q + , q + , .  . .). 
Clearly this duality, resulting from symmetry properties of the dynamics (9) explains 
why the stability diagram of the full mixture state q+ is symmetric with respect to the 
interchange U + 1 - U. It also indicates that with each stable non-symmetric fixed- 
point in the Hopfield region T < 2u - 1 will correspond a stable p-periodic limit 
cycle in the region T < 1 - 2u. This, in turn, implies that to the first-order transition 
line U+(?') in the region T < 2u - 1 (between stable Hopfield-type fixed-points 
and either the full mixture state q+ or a limit-cycle attractor) there must correspond 
a first-order transition line u-(T)  in the region T < 1 - 2u, which separates the 
low-temperature region where there are stable p-periodic limit cycles (different from 
the fixed-point q+) from the region where such limit cycles do not exist. 

If we finally choose the initial state qo of the sequence Q to be a pure state (i.e. 
qo = qoi, for some p) ,  we can use the relation I i q o  = .S'-2pqo and the fact that S 
is a symmetry mapping to derive: 

Q 3 { q O Z p , q l , .  . . ,q,, ,  . . .) Q' G {qOep,  . S 2 " l t ~ ~ l , .  . . , . P f Z p - ' I ~ q  1 , .  . . .) 
Q E I:,, e Q' E t l - " .  

Once we know which is the trajectory followed by the state vector upon choosing a 
pure initial state qo&, in the upper part of the T / u  phase diagram, we can immedi- 
ately construct the trajectory that starts in the very same initial pure state qo.G, for 
the lower part of the phase diagram. Furthermore hoth amplitude and 10) component 
of the two evolving state vectors will always be the same, since 

p " t 2 P - I I i  21 = 121 (oI[S"+?"-'li]r) = (012). 
If the initial pure state qoP, is in the attraction domain of some non-trivial fixed-point 
q* we obtain 

( 1 , )  = ( I - v )  = 

lim 9::) = 9' +. q;-4 - , j+?P-'  ICq' 

[ S " + ~ P - ' K q * ] #  = q:,--p+2p. 

9 0  9 0  - : 

(n - m) 
n 3 N  



Paffem reconsfmction and sequence processing 5515 

If q* = qt,  i.e. the pure state qo&p is in the domain of attraction of the ful l  mixture 
state for parameter value v,  then also for parameter value 1 - U this pure state 
will flow towards qt (since Kq+ = Sqt = q+). If q' q+ is a non-trivial fixed- 
point (in the region T < 2u - 1) we can immediately calculate the (stable) limit 
cycle to which q,,&, will he driven for the parameter value 1 - v. The 1 - v limit 
cycle q; SntaP-'Kq* represents a smooth periodic trajectory with period p, the 
state Vectors of which can be calculated using the series expansion introduced for 
calculating the fixed-points q* in section 3.4. 

6. Numerical iteration of the macroscopic laws 

61. Periodic affracfors 

In this section we will analyse some properties of the periodic solutions (note that 
for p - 03 in most of the phase diagram, T > 2v - 1, there will be no stable 
fixed-points). Since it is impossible to systematically vary both the model parameters 
U, T and p and all possible initial conditions q,, in a numerical study of the system 
equations (8) and (9). we will restrict ourselves and present some typical examples 
of the behaviour observed. If, as a first step, one is only interested in the existence 
and amplitude of periodic attractors, it might be convenient to reduce the number of 
order parameters considered from p to 2,  by introducing the decomposition: 

d t )  E Qs(t)(19. . . 
Q,(t)=pLq,,(t) ( l , . . . , l ) . q L ( t ) = O  Q d ~ I q ( t ) - Q ~ ( t ) ( I , . . . , l ) I .  

For T > 2v - 1 the only possible fixed-point is q+. In this region of the phase 
diagram the existence of a non-stationary solution is therefore equivalent to finding 

We will first restrict ourselves to parallel dynamics (the behaviour of equation 
(9)). Figure 4 shows for p = 9, T = 0.5 and v E {0.25,0.5,0.75) the evolution 
in time of the overlaps {q,,) (upper row) from a pure initial state q,, = 6,,, as well 
as the evolution in time of the amplitudes Q, and Qd following 50 random draws of 
initial state vectors q,, (lower row). Since, in terms of stability, we have previously 
found that the cases p odd and p even may he quite different, the results of similar 
experiments performed with p = 10 are shown in figure 5. From these figures we can 
draw some conclusions, which numerical experiments (performed for larger values of 
p and different choice for T and U) show to be quite generally valid: 

(i) Starting from a pure initial state the system evolves towards a limit cycle, which 
depends on the parameter v only through the value of its period n. 

(ii) The region in the phase diagram where pure states are in the domain of 
attraction of the full mixture qt is only a subset of the region where the full mixture 
i stable. 

(iii) The amplitudes IQs(t) l  and Qd(t)  tend towards stationary values for 1 - 03 

(which do not dependent on the initial state). 
The above conclusions seem to hold in general as long as T > 2v - 1 and 

T > 1 - 2". If 7' < 2u - 1 or T < 1 - 2v the amplitudes 1Q,1 and Qd will 
no longer be uniquely defined as soon as one passes the first-order transition lines 

+ Q d ( t ) G * ( t )  
1 7  

!J 

Qd > 0. 
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u,(T),  which is due to the appearance of Hopfield-type fixed-points and their dual 
p-periodic limit cycles, respectively. 

The huge amount of computer time involved prevented us from performing similar 
numerical studies for the case of sequential dynamics. The only feature we wish to 
illustrate is the somewhat surprising conclusion obtained from studying fixed-points 
and their stability: the fact that sequential dynamics allows for (non-fixed-point) 
periodic attractom. Figure 6 shows the result of iterating the macroscopic laws (8) 
for p = 10, T = 0.1 and U = 0 ,  following a pure initial state. Data are shown (and 
connected) in At  = 1 time intervals. Although systems with sequential dynamics 
indeed turn out to be able to exhibit oscillatory overlap evolutions (without having to 
introduce stabilizing mechanisms), the amplitude of these limit cycles is significantly 
smaller than the amplitude corresponding to parallel dynamics (at least for random 
patterns). 

A C C Coolen and D ShcrringIon 

g . 6  
.-a 
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i 

0 10 20 30 40 50 
t i m e  

Figure 6 Numerical iteratian of the macmscopic laws far sequential dynamics. starting 
from a pure state (p = 10, T = 0.1 and U = 0) .  

62. The fist-order transitions 

The properly of the amplitudes Qd and IQ,I that in most of the phase diagram they 
evolve towards some ergodic value, enables us illustrate the first-order transitions in 
terms of these amplitudes. lb fix their values uniquely in the regions T < 2v - 1 
and T < 1 - 2u as well, we consider only the (parallel) evolution in time following 
an intitial pure state q , & ( O )  3 6,,,. 

The equilibrium values found turn out to depend only on tu- $ 1  (as predicted hy 
the u / l  - U duality). Figure 7 shows as a function of temperature the equilibrium 
amplitudes Qd (upper row) and Q, (lower row) for p = 9 and p = 10 and tu- $ 1  E 
{O,O.l,O.Z,O.3,0.4,0.6). Again, making different choices for the system parameters 
produces graphs which are only quantitatively different from the ones presented in 
figure 7. The first-order transitions at u,(T) are reflected in discontinuities in the 
amplitudes Qd and Q. as soon as v < 1. Only lor u = 1 (the Hopfield model) and 
p = 2 (symmetric interaction matrix) are the transitions second order. 



Pattem reconstnrction and sequence processing 5519 

QS 

- 
0 .2 .4 .6 .8 1 

- t  
.2 

.1 
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0 ,,,,, 
Figure 7. Equilibrium amplitudes as a function of temperature (parallel dynamic%, 
numerically ilemled following n pure inilinl slate): p = 9, Q d  (a) and Q. (c); p = 10, 
Qd (b) and Q. (d); 0, Y E { O , l ) ;  A, v E {0.1,0.9); 0, U E { 0 . 2 , 0 . 8 ) ;  0, 
v E { 0 . 3 , 0 . 7 ) ; * , v E { O . 4 , 0 . 6 ) ; x , v = 0 . 5 .  

The locations in the phase diagram of the two first-order transition lines v,(T) 
are found not to depend much on the dimension p.  as long as p > 2 (in contrast 
to the magnitude of the jumps at the discontinuities). It turns out that in good 
approximation the critical lines are given by 

u , ( ~ )  = 4 T[I - T +  ;TZ - : ~ ~ 1  (40) 

which are depicted in figure 8, together with the results of locating the first-order uan- 
sition by numerical iteration of the parallel dynamical equations for p E {3,4,9,10}.  
The accuracy of the numerical data is A(", v )  = (0.002,O); within this error margin 
there was no difference between the p = 9 and the p = 10 results. The correspond- 
ing data for sequential dynamics differ only in the absence of the U < 5 transition 
line u-(T). 
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Figure 8 The Rnl-order Vansition lines v*(T) ,  logether with corresponding numerical 
dab: O , p = 3 ; 0 . p = 4 ; A , p = 9 , 1 0 .  

63. The attraclor period R for parallel dynamics 

Finally we will study, for parallel dynamics, the dependence of the period R of the 
periodic attractors on the system parameters. For U = 1 (the Hopfield model) we 
know that the system will always settle into an equilibrium state. Using the duality of 
section 5.2 it now immediately follows that for U = 0 the system will evolve towards 
a stable period-p limit cycle, i.e. R = p for U = 0. In order to find the period 
for intermediate values of U we will make an ansatz for the solution of the dynamic 
equations (9), which is inspired by the numerical results of the previous sections: 

which simply amounts to assuming (quasi-) periodic trajectories with constant velocity 
(symmetric in the pattern indices). The period R can be written as R = p / w .  If we 
now assume that the pure states are in the domain of attraction of the limit cycle 
(41), we can again use the results of section 5.2 to obtain 

(where we have fixed the phase of the function f by putting .$# 3 0). From this 
relation we can deduce d+,,/du = 0 (by considering p = p ,  t = 0 )  and f[z] = 
f [ (4  + 2 ) / p  - +] (by considering t = 0). Finally we arrive at 

If our ansatz is correct and if the corresponding period is the smallest R such that 
the actual solution can be written in the form (41), we may conclude 

q-,, = 1 - w,  (42) 

which relates the limit-cycle periods in the upper half of the phase diagram to the 
periods in the lower half. In particular we have: w, = 1, w , . ~  = f, w1 = 0 (or, in 
terms of periods: R, = p ,  = 2 p ,  R,  = 03). 
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In order to calculate wl, = p/Q,, explicitly, we will have to insert the ansatz (41) 
into the dynamic laws (9): 

(43) 

Since p and t can only have discrete values, the problem of calculating f and w from 
(43) Q well defined only for large p and upon assuming continuity and continuous 
differentiability of f. Therefore we will restrict ourselves to the large p case and 
expand (43): 

Q!!?p2ring thP !awes nrders, 2nd ascuming !!?e- ! P r m S  Wi!!! deriv2tives of f to mn- 
tribute increasingly smaller powers of p ,  gives two equations: 

f [y] = (<,, tan11 [P,W [?]I) 
E 

(44) 

})< + . . . . (45) 

Finally we expand (44) for t = 1 in w j p  and choose in (45) t = 0: 
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(48) 

Equation (46) shows that for large p the shape of the periodic ansatz (41) corre- 
sponds to that of one of the spurious faed-points of the Hoplield model. Combining 

sequence velocity w p/R: 
q<2;;Grd (47) aiid (G) ~ y , l i m e ~ ~ i i e ~ y  yie;QS the laige ii Kpiesjion fOi 'uie ieiaik"e 

lim U,, = 1 - U. 
P" (49) 

In terms of periods: S l y  - p / ( l  - U) for p - W. The derivation leading to this 

the expansion terms of (43) were made (of the type: q , ( t  + 1) - q, ( f . )  = O(l /p) ) .  
However, numerical experiments show that expression (49) describes the actual values 
of the attractor periods surprisingly well, even for relatively small mlues of p. The 
only restriction is (as might have been expected) that (49) no longer applies if one 
crosses the f i r s tader  transition lines u,(T) (where w becomes either 0 or 1). 

result is far from k i n g  rigoroq gvpra! BStJmptinnr on the. !.rge. p b&.vio:r of 

p=9 p=10 

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1 
T T 

Figure 9. The relalive wquence processing speed pln as a funclion of temperalure lor 
Y = 0.1 10 0.9 (lop to bollom, A V  = 0.1) and p x a l l r l  dynamics. Note llial equalion 
(49) predicu = 1 - Y in the limit of large 1'. 

Figure 9 shows the result of determining the relative sequence speeds w p/R 
numerically (after iteration of the mappings (9)) Cor p = 0 and p = 10, as a function 
of T. The values chosen for U ranged between 0.1 and 0.9 ( n u  = 0.1). These 
resuits snow that, away from the first-order transitions, expression (49j hoids in good 
approximation. The only influence of the temperature on w (and n) seems to be that 
T determines whether or not the first-order transition lines have been crossed. Once 
in the middle region of the phase diagram (U-(?') < U < u+(T)), the attractor 
periods will depend on U only. %king the effect of the possible crossing of the 
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transition l i e s  U,(") @y variation of v )  into account, one arrives for large p at the 
relation depicted in figure 10. The positions of the discontinuities depend on T and 
are given by (40). For finite p one must, in addition, take into account that near 
T = 1 the system might evolve towards the full mixture fixed-point q+. 

c \ "1 

Flgum 10. me large p relation between the relalive sequence processing speed p / O  
and U (pamllel dynamics: the temperature dependent locations v* of the dismntinuilies 
are given by lhe firrt-order lmnsilion lines v*(T)) .  

7. Discussion 

In this paper we have studied the competition between pattern reconstruction and 
sequence processing in an king spin model of a neural network in which the interac- 
tion matrix is composed of a symmetric Hebbian term and a non-symmetric transition 
term. For p = 2 analysing the model became trivial; due to its periodicity the p = 2 
transition term is symmetric and we could both solve the dynamics and ululate the 
free energy. 

The behaviour of the p > 2 model with parallel dynamics can be described as 
follows. For each temperature T < T, = 1 there are three regimes in terms of the 
relative weight U of the two terms in the interaction matrix (v = 1: symmetric term 
only, U = 0: transition term only). Near v = 1 (dominating Hehhian term) the 
system goes to a fixed-point; the only effect of the presence of the transition term is 
that this Iixed-point will have non-zero correlations with all patterns involved. Near 
v = 0 (dominating transition term) the system goes to a period-p limit cycle; the only 
effect of the presence of the Hebbian term is that this limit cycle will have non-zero 
correlations with alf patterns involved. In the intermediate region the system either 
goes to the full mixture fixed-point q = q(T)( 1 , .  . . , I )  (for p sufficiently small) or to 
a limit cycle with a period in between the two extreme cases: R E [p.m]. For large 
p we have derived an asymptotic expression for this period; numerical iteration of 
the dynamic equations shows this expression to hold in good approximation already 
for p - 10. The transitions between the three regions are first order. In the 
limit p + m the full mixture fixed-point will eventually become unstable for all U, 
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T < 1. It turned out that all dynamic solutions of the macroscopic laws for the order 
parameters (overlaps) in the region v > are related to the solutions in the region 
U < 4 by a time-dependent unitary transformation, which explains the symmetry of 
the phase diagrams. 

The behaviour of the p > 2 model with sequential dynamics is different. Near 
Y = 1 (dominating Hebbian term) the system again goes to a futed-point which 
has non-zero correlations with all patterns involved. If v is lowered (increasing 
urtyurmrrrr; U L  Ulr U'UIJILLUII LGlLL l )  a IUDL-UIUG, U Q I b I L I V I I  "LLYL> allu "IC syblcrll ClLllCr 

goes to the full mixture fixed-point q = q( T ) (  1, .  . . ,1) (for p sufficiently small) or to 
a limit cycle (for p sufficiently large). In the limit p - 00 the full mixture fixed-point 
will again eventually become unstable for all v ,  T < 1. In contrast to the previous 
situation, there is no symmetry in the phase diagram corresponding to the interchange 
of the Hebbian term and the transition term; accordingly there is no evidence for a 
second first-order transition in the region v < 1. An interesting result is the very 
presence (for p sufficiently large) of stable non-stationary limit cycles; intuitively one 
would expect that without stabilizing mechanisms sequential dynamics would always 
drive the system towards the full mixture fixed-point. 

If we compare our results with those obtained in [ll] and [12] for the symmetric 
version of the present model, the most important difference (apart from the presence 
of stable non-stationary trajectories) is the absence in the present model of zero 
temperature v < 4 fixed-points with a finite number of non-zero components. At 
T = 0 we find that there are pure fixed points for v > 4 and only fully symmetric 
ked-points for v < $. Futed-points of the type encountered in the experiments of 
Miyashita [13] are found only for 0 < T < 2v - 1;  these Iixed-points have non-zero 
components only (although only two or three components turn out to be noticably 
non-zero). 

In spite of the non-symmetry of the interaction matrix it turned out that it still 
contained enough structure to enable us to build a comprehensive picture of the 
system's phase diagram. The two most important building blocks for our analysis 
are (a) the fact that in all of the region T > 2v - 1 we could prove all possible 
ked-points to be symmetric in the pattern index (whatever choice of dynamics); and 
@) the duality between the dynamic solutions for parallel dynamils with respect to 
",,c,L,ld,,g,,,g U1C I G l d L I Y C  wr;rgr,r3 U, ,,E LWU LG11110 111 L l l r  U l l r l Y C L l U l l  1 I I O L . M  \cauaru 

by symmetries in the dynamical laws for the evolution of the order parameters). 
If we examine more closely the statistical properties of the stored patterns (in this 
paper the patterns were chosen to be drawn at random) that were really essential 
for our analysis, it turns out that the only requirement for being able to generalise 
our calculations to the case of more general definitions of patterns is that the pattem 
correlation matrix C must commute with S, and therefore must be a Toeplitz matrix, 
ie. C,, = g ( p  - v )  (for some periodic function 9). This means that as a next 
step we might analyse the behaviour of the present modcl for those situations where 
subsequent patterns are correlated (which Will be the subject of a future paper). 

A C C Coolen and D Sherringfon 
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S. Appendix: uniqueness of the fixed-point 

In this section we show that for T > 2u - I any fixed point q # 0 of the fixed-point 
equation (16) must have the property: qA = q,, for all X and p. This immediately 
leads to the conclusion that the only non-trivial fwed points are 5 q t .  Suppose that 
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two real-valued pdimensional vectors q and I.! are related hy 

q = (Etanh (PC . I . ! ) ) (  

where (as throughout the paper) the vectors < are drawn from the set {-1, l}p with 
uniform probabilities, then the following identities hold: 

For T > 0 these enable us to conclude 

sgdq, - s r )  = sgn(k, - k,d 

14, - q x l <  tanh(Plk, - k,l) < Plk, -  AI 
V P ,  

~ P , A .  

In our case the fixed-point equation (16) is obtained by making the identification 
k s Aq, which yields 

w ( q ,  - q d  = sgn ( ( 4 1 ,  - (Aq),)  

!q,-q,! < t a n h ( , ~ ! ( A ~ ) , - ! A o ) h l )  $ ,Ol(.Aq),,-(.A$!Aj 

V P ,  

tlg,X. 

From these relations one can derive many conclusions on the dependence of the 
possible futed-points on properties of the matrix A. For the Hopfield model 121 
(A = 1) these relations are empty statements; however, in general they turn out to be 
rather restrictive. Here we will proceed by making for A the choice A = U+( 1-u)S 
(with U < I), with the result 

sgn(q, - qA) = sgn b ( 4 ,  - 9x1 + ( 1  - u)(q,'-l - 4 A - J I  V P .  (mod P) 

14, - q A I  < PlV(q, - q A )  + (1  - u)(q,,-l - r l A - l ) l  V P , X  (mod P). 

From these relations, in turn, it follows that for all X,p (mod p): 

For T = 0 we can also arrive at (51); in this case it follows from (50) that 

(4, - - k A )  2 O .  

Insertion of k = Aq with A U + (1 - u)S gives immediately the T = 0 version of 
(51). Therefore (51) holds for all T > 2u - 1 .  

Relations (51) turn out to be sufficient for proving that q,  = qh for all A, CL (the 
following version of the remaining proof we owe to David Rabson). Suppose that the 
components of q are not all the same. It then follows that an index p exists, such 
that 

qp < 9x (VX! 4p+!  > ( I p .  

We can now proceed by induction: if for any given n 2 0 we h o w  that qp+l > qp-",  
then upon choosing IL p + 1 and X z p - n equation (51) tells us that 

4,+1 + 9, > qp-7.  + 9p-*-1 
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so 

A C C Coolen and D Shem'ngfon 

Repeating the argument shows that the propositions q,+l > q, and q, < q,VA will 
inevitably lead to the contradiction qPt1 > qPt1. The final conclusion must be that 
if T > 2u - 1 then all components q,, of a solution q of the tixed-point equation 
(16) mls! q,*k th.pr&re an!y :a:-triv.tia! fiu&nnintr SIP f9+. r--- I.- 
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